Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Frozen magma lenses below the oceanic crust

Abstract

The Earth's oceanic crust crystallizes from magmatic systems generated at mid-ocean ridges. Whereas a single magma body residing within the mid-crust is thought to be responsible for the generation of the upper oceanic crust, it remains unclear if the lower crust is formed from the same magma body, or if it mainly crystallizes from magma lenses located at the base of the crust1,2,3. Thermal modelling4,5,6, tomography7, compliance8 and wide-angle seismic studies9, supported by geological evidence3,10,11,12,13,14,15,16,17,18, suggest the presence of gabbroic-melt accumulations within the Moho transition zone in the vicinity of fast- to intermediate-spreading centres. Until now, however, no reflection images have been obtained of such a structure within the Moho transition zone. Here we show images of groups of Moho transition zone reflection events that resulted from the analysis of 1,500 km of multichannel seismic data collected across the intermediate-spreading-rate19 Juan de Fuca ridge. From our observations we suggest that gabbro lenses and melt accumulations embedded within dunite or residual mantle peridotite are the most probable cause for the observed reflectivity, thus providing support for the hypothesis that the crust is generated from multiple magma bodies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Study area and strength of the Moho reflection event for the 2002 Juan de Fuca ridge flank seismic profiles is plotted in colour over a sun-illuminated grey bathymetry map.
Figure 2: Seismic reflection structure of the oceanic crust characterized by thick and thin MTZs.
Figure 3: Modelled and measured reflection amplitude versus offset dependence for the MTZ events shown in Fig. 2b.
Figure 4: A series of subcrustal reflection events recorded on line 87-89-73-89a is displayed at the distance to depth ratio of about 1:1.

Similar content being viewed by others

References

  1. Sinton, J. M. & Detrick, R. S. Mid-ocean ridge magma chambers. J. Geophys. Res. 97, 197–216 (1992)

    Article  ADS  CAS  Google Scholar 

  2. Phipps Morgan, J. & Chen, Y. J. The genesis of oceanic crust; magma injection, hydrothermal circulation, and crustal flow. J. Geophys. Res. 98, 6283–6297 (1993)

    Article  ADS  Google Scholar 

  3. Kelemen, P. B. & Aharonov, E. in Faulting and Magmatism at Mid-Ocean Ridges (eds Buck, W. R., Delaney, P. T., Karson, J. A. & Lagabrielle, Y.) 267–289 (Geophysical Monograph 106, AGU, Washington DC, 1998)

    Google Scholar 

  4. Garrido, C. J., Kelemen, P. B. & Hirth, G. Variation of cooling rate with depth in lower crust formed at an oceanic spreading ridge: Plagioclase crystal size distributions in gabbros from the Oman ophiolite. Geochem. Geophys. Geosyst. 2, doi:10.1029/2000GC000136 (2001)

  5. Cherkaoui, A. S. M., Wilcock, W. S. D., Dunn, R. A. & Toomey, D. R. A numerical model of hydrothermal cooling and crustal accretion at a fast spreading mid-ocean ridge. Geochem. Geophys. Geosyst. 4, doi:10.1029/2001GC000215 (2003)

  6. Maclennan, J., Hulme, T. & Singh, S. C. Thermal models of oceanic crustal accretion: Linking geophysical, geological and petrological observations. Geochem. Geophys. Geosyst. 5, doi:10.1029/2003GC000605 (2004)

  7. Dunn, R. A., Toomey, D. R., Detrick, R. S. & Wilcock, W. S. D. Continuous mantle melt supply beneath an overlapping spreading center on the East Pacific Rise. Science 291, 1955–1958 (2001)

    Article  ADS  CAS  Google Scholar 

  8. Crawford, W. C. & Webb, S. C. Variations in the distribution of magma in the lower crust and at the Moho beneath the East Pacific Rise at 9°-10° N. Earth Planet. Sci. Lett. 203, 117–130 (2002)

    Article  ADS  CAS  Google Scholar 

  9. Garmany, J. Accumulations pf melt at the base of young oceanic crust. Nature 340, 628–632 (1989)

    Article  ADS  Google Scholar 

  10. Karson, J. A., Collins, J. A. & Casey, J. F. Geologic and seismic velocity structure of the crust/ mantle transition in the Bay of Islands ophiolite complex. J. Geophys. Res. 89, 6126–6138 (1984)

    Article  ADS  Google Scholar 

  11. Collins, J. A., Brocher, T. M. & Karson, J. A. Two-dimensional seismic reflection modeling of the inferred fossil oceanic crust/mantle transition in the Bay of Islands Ophiolite. J. Geophys. Res. 91, 12520–12538 (1986)

    Article  ADS  Google Scholar 

  12. Benn, K., Nicolas, A. & Reuber, I. Mantle-crust transition zone and origin of wehrlitic magmas; evidence from the Oman Ophiolite. Tectonophysics 151, 75–85 (1988)

    Article  ADS  CAS  Google Scholar 

  13. Boudier, F. & Nicolas, A. Nature of the Moho transition zone in the Oman ophiolite. J. Petrol. 36, 777–796 (1995)

    Article  ADS  CAS  Google Scholar 

  14. Boudier, F., Nicolas, A. & Ildefonse, B. Magma chambers in the Oman Ophiolite; fed from the top and the bottom. Earth Planet. Sci. Lett. 144, 239–250 (1996)

    Article  ADS  CAS  Google Scholar 

  15. Korenaga, J. & Kelemen, P. B. Origin of gabbro sills in the Moho transition zone of the Oman Ophiolite; implications for magma transport in the oceanic lower crust. J. Geophys. Res. 102, 27729–27749 (1997)

    Article  ADS  CAS  Google Scholar 

  16. Nicolas, A., Boudier, F., Ildefonse, B. & Ball, E. Accretion of Oman and United Arab Emirates ophiolite; discussion of a new structural map. Mar. Geophys. Res. 21, 147–179 (2000)

    Article  Google Scholar 

  17. Jousselin, D. & Nicolas, A. The Moho transition zone in the Oman Ophiolite; relation with wehrlites in the crust and dunites in the mantle. Mar. Geophys. Res. 21, 229–241 (2000)

    Article  Google Scholar 

  18. Godard, M., Jousselin, D. & Bodinier, J.-L. Relationships between geochemistry and structure beneath a paleo-spreading centre; a study of the mantle section in the Oman Ophiolite. Earth Planet. Sci. Lett. 180, 133–148 (2000)

    Article  ADS  CAS  Google Scholar 

  19. Wilson, D. S. Confidence intervals for motion and deformation of the Juan de Fuca Plate. J. Geophys. Res. 98, 16053–16071 (1993)

    Article  ADS  Google Scholar 

  20. Brocher, T. M., Karson, J. A. & Collins, J. A. Seismic stratigraphy of the oceanic Moho based on ophiolite models. Geology 13, 62–65 (1985)

    Article  ADS  Google Scholar 

  21. Hey, R., Duennebier, F. K. & Morgan, W. J. Propagating rifts on midocean ridges. J. Geophys. Res. 85, 3647–3658 (1980)

    Article  ADS  Google Scholar 

  22. Hey, R., Kleinrock, M. C., Miller, S. P., Atwater, T. M. & Searle, R. C. Sea Beam/ deep-tow investigation of an active oceanic propagating rift system, Galapagos 95.5 W. J. Geophys. Res. 91, 3369–3393 (1986)

    Article  ADS  Google Scholar 

  23. Ceuleneer, G., Monnereau, M. & Amri, I. Thermal structure of a fossil mantle diapir inferred from the distribution of mafic cumulates. Nature 379, 149–153 (1996)

    Article  ADS  CAS  Google Scholar 

  24. Amri, I., Benoit, M. & Ceuleneer, G. Tectonic setting for the genesis of oceanic plagiogranites; evidence from a paleo-spreading structure in the Oman Ophiolite. Earth Planet. Sci. Lett. 139, 177–194 (1996)

    Article  ADS  CAS  Google Scholar 

  25. Carlson, R. L. in Handbook of Elastic Properties, Liquids, and Gases (eds Levy, M., Bass, H. & Stern, R.) 377–461 (Academic Press, New York, 2001)

    Google Scholar 

Download references

Acknowledgements

We are grateful to P. B. Kelemen and W. R. Buck for their reviews. K. Vasudevan provided us with a stacked section of the Canadian line 1989-15, shown in Supplementary Information. The Doherty and National Science Foundations supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mladen R. Nedimović.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains the Supplementary Methods, Supplementary Discussions and additional references. (DOC 49 kb)

Supplementary Figure S1

(a) A close-up look on the most extensive series of subcrustal reflection events recorded during the EW0207 cruise and (b) stack of the same part of profile 17-3-1 shown in (a). (PDF 140 kb)

Supplementary Figure S2

Partial stacks of the line 17-3-1 area displayed in Fig. S1. (PDF 1374 kb)

Supplementary Figure S3

Shot-to-shot time intervals for segment 3 of line 17-3-1 (PDF 91 kb)

Supplementary Figure S4

Plan view of the area where the SW end of the Geological Survey of Canada profile 1989-15 meets the part of the EW0207 profile 17-3-1 (PDF 73 kb)

Supplementary Figure S5

Partially stacked super CMP gathers from Line 17-3-1 (a) and Line 34-32 (b). (PDF 66 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nedimović, M., Carbotte, S., Harding, A. et al. Frozen magma lenses below the oceanic crust. Nature 436, 1149–1152 (2005). https://doi.org/10.1038/nature03944

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03944

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing