Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evolution of helium isotopes in the Earth's mantle

Abstract

Degassing of the Earth's mantle through magmatism results in the irreversible loss of helium to space, and high 3He/4He ratios observed in oceanic basalts have been considered the main evidence for a ‘primordial’ undegassed deep mantle reservoir. Here we present a new global data compilation of ocean island basalts, representing upwelling ‘plumes’ from the deep mantle, and show that island groups with the highest primordial signal (high 3He/4He ratios) have striking chemical and isotopic similarities to mid-ocean-ridge basalts. We interpret this as indicating a common history of mantle trace element depletion through magmatism. The high 3He/4He in plumes may thus reflect incomplete degassing of the deep Earth during continent and ocean crust formation. We infer that differences between plumes and the upper-mantle source of ocean-ridge basalts reflect isolation of plume sources from the convecting mantle for 1–2 Gyr. An undegassed, primordial reservoir in the mantle would therefore not be required, thus reconciling a long-standing contradiction in mantle dynamics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nd–Pb–He isotopes of OIB and MORB.
Figure 2: Th, Th/La, SiO 2 and helium isotope ratios of OIB and MORB.
Figure 3: 3 He/ 4 He –Th of OIB and MORB.
Figure 4: Helium isotope evolution of mantle reservoirs.
Figure 5: Plume source formation ages from the incomplete degassing model.

Similar content being viewed by others

References

  1. Lupton, J. E. & Craig, H. Excess 3He in oceanic basalts; evidence for terrestrial primordial helium. Earth Planet. Sci. Lett. 26, 133–139 (1975)

    Article  ADS  CAS  Google Scholar 

  2. Kurz, M. D., Jenkins, W. J. & Hart, S. R. Helium isotopic systematics of oceanic islands and mantle heterogeneity. Nature 297, 43–47 (1982)

    Article  ADS  CAS  Google Scholar 

  3. Hart, S. R., Hauri, E. H., Oschmann, L. A. & Whitehead, J. A. Mantle plumes and entrainment: Isotopic evidence. Science 256, 517–520 (1992)

    Article  ADS  CAS  Google Scholar 

  4. Farley, K. A., Natland, J. H. & Craig, H. Binary mixing of enriched and undegassed (primitive?) mantle components (He, Sr, Nd, Pb) in Samoan lavas. Earth Planet. Sci. Lett. 111, 183–199 (1992)

    Article  ADS  CAS  Google Scholar 

  5. O'Nions, R. K., Evensen, N. M. & Hamilton, P. J. Geochemical modeling of mantle differentiation and crustal growth. J. Geophys. Res. 84, 6091–6101 (1979)

    Article  ADS  CAS  Google Scholar 

  6. Allègre, C. J., Staudacher, T. & Sarda, P. Rare gas systematics: formation of the atmosphere, evolution and structure of the earth's mantle. Earth Planet. Sci. Lett. 81, 127–150 (1987)

    Article  ADS  Google Scholar 

  7. Graham, D. W. in Noble Gases in Geochemistry and Cosmochemistry (eds Porcelli, D., Ballentine, C. J. & Wieler, R.) 247–317 (Mineralogical Society of America, Washington DC, 2002)

    Book  Google Scholar 

  8. Kurz, M. D., Jenkins, W. J., Hart, S. R. & Clague, D. Helium isotopic variations in volcanic rocks from Loihi Seamount and the Island of Hawaii. Earth Planet. Sci. Lett. 66, 388–406 (1983)

    Article  ADS  CAS  Google Scholar 

  9. Graham, D. W., Humphris, S. E., Jenkins, W. J. & Kurz, M. D. Helium isotope geochemistry of some volcanic rocks from Saint Helena. Earth Planet. Sci. Lett. 110, 121–131 (1992)

    Article  ADS  CAS  Google Scholar 

  10. Hanyu, T. & Kaneoka, I. The uniform and low 3He/4He ratios of HIMU basalts as evidence for their origin as recycled materials. Nature 390, 273–276 (1997)

    Article  ADS  CAS  Google Scholar 

  11. Moreira, M. & Kurz, M. D. Subducted oceanic lithosphere and the origin of the ‘high mu’ basalt helium isotopic signature. Earth Planet. Sci. Lett. 189, 49–57 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Stuart, F. M., Lass-Evans, S., Fitton, J. G. & Ellam, R. M. High 3He/4He ratios in picritic basalts from Baffin Island and the role of a mixed reservoir in mantle plumes. Nature 424, 57–59 (2003)

    Article  ADS  CAS  Google Scholar 

  13. Hofmann, A. W., Jochum, K. P., Seufert, M. & White, W. M. Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth Planet. Sci. Lett. 79, 33–45 (1986)

    Article  ADS  CAS  Google Scholar 

  14. Zindler, A. & Hart, S. R. Helium: problematic primordial signals. Earth Planet. Sci. Lett. 79, 1–8 (1986)

    Article  ADS  CAS  Google Scholar 

  15. Hofmann, A. W. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229 (1997)

    Article  ADS  CAS  Google Scholar 

  16. Coltice, N. & Ricard, Y. Geochemical observations and one layer mantle convection. Earth Planet. Sci. Lett. 174, 125–137 (1999)

    Article  ADS  CAS  Google Scholar 

  17. Creager, K. C. & Jordan, T. H. Slab penetration into the lower mantle. J. Geophys. Res. 89, 3031–3049 (1984)

    Article  ADS  Google Scholar 

  18. Dziewonski, A. M. & Woodhouse, J. H. Global images of the Earth's interior. Science 236, 37–48 (1987)

    Article  ADS  CAS  Google Scholar 

  19. Grand, S. P. & van der Hilst, R. D. Global seismic tomography: A snapshot of convection in the Earth. GSA Today 7, 1–7 (1997)

    Google Scholar 

  20. van der Hilst, R. D. & Karason, H. Compositional heterogeneity in the bottom 1000 kilometers of Earth's mantle: Toward a hybrid convection model. Science 283, 1885–1888 (1999)

    Article  ADS  CAS  Google Scholar 

  21. Abedini, A. A. & Hurwitz, S. A global dataset of noble gas concentrations and their isotopic ratios in volcanic areas. Eos Trans. AGU 85, abstract V51B–0524 (2004)

  22. O'Nions, R. K. & Oxburgh, E. R. Heat and helium in the Earth. Nature 306, 429–431 (1983)

    Article  ADS  CAS  Google Scholar 

  23. Mukhopadhyay, S., Lassiter, J. C., Farley, K. A. & Bogue, S. W. Geochemistry of Kauai shield-stage lavas: Implications for the chemical evolution of the Hawaiian plume. Geochem. Geophys. Geosyst. 4, doi:10.1029/2002GC000342 (2003)

  24. Farley, K. A. Rapid cycling of subducted sediments into the Samoan mantle plume. Geology 23, 531–534 (1995)

    Article  ADS  CAS  Google Scholar 

  25. Hofmann, A. W. & White, W. M. Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett. 57, 421–436 (1982)

    Article  ADS  CAS  Google Scholar 

  26. Craig, H., Clarke, W. B. & Beg, M. A. Excess 3He in deep water on the East Pacific Rise. Earth Planet. Sci. Lett. 26, 125–132 (1975)

    Article  ADS  CAS  Google Scholar 

  27. Hauri, E. H., Lassiter, J. C. & DePaolo, D. J. Osmium isotope systematics of drilled lavas from Mauna Loa, Hawaii. J. Geophys. Res. 101, 11793–11806 (1996)

    Article  ADS  Google Scholar 

  28. Kellogg, L. H. & Wasserburg, G. J. The role of plumes in mantle helium flux. Earth Planet. Sci. Lett. 99, 276–289 (1990)

    Article  ADS  CAS  Google Scholar 

  29. Porcelli, D. & Wasserburg, G. J. Mass transfer of helium, neon, argon, and xenon through a steady-state upper mantle. Geochim. Cosmochim. Acta 59, 4921–4937 (1995)

    Article  ADS  CAS  Google Scholar 

  30. Anderson, D. L. A model to explain the various paradoxes associated with mantle noble gas geochemistry. Proc. Natl Acad. Sci. USA 95, 9087–9092 (1998)

    Article  ADS  CAS  Google Scholar 

  31. Albarède, F. Time-dependent models of U–Th–He and K–Ar evolution and the layering of mantle convection. Chem. Geol. 145, 413–429 (1998)

    Article  ADS  Google Scholar 

  32. Montelli, R. et al. Finite-frequency tomography reveals a variety of plumes in the mantle. Science 303, 338–343 (2004)

    Article  ADS  CAS  Google Scholar 

  33. Morgan, J. P. & Morgan, J. W. Two-stage melting and the geochemical evolution of the mantle: a recipe for mantle plum-pudding. Earth Planet. Sci. Lett. 170, 215–239 (1999)

    Article  ADS  Google Scholar 

  34. Ballentine, C. J., van Keken, P. E., Porcelli, D. & Hauri, E. H. Numerical models, geochemistry and the zero-paradox noble-gas mantle. Phil. Trans. R. Soc. Lond. A 360, 2611–2631 (2002)

    Article  ADS  CAS  Google Scholar 

  35. Allègre, C. J., Hofmann, A. W. & O'Nions, R. K. The argon constraints on mantle structure. Geophys. Res. Lett. 23, 3555–3557 (1996)

    Article  ADS  Google Scholar 

  36. Davies, G. F. Geophysically constrained mantle mass flows and the 40Ar budget: A degassed lower mantle? Earth Planet. Sci. Lett. 166, 149–162 (1999)

    Article  ADS  CAS  Google Scholar 

  37. Lassiter, J. C. Role of recycled oceanic crust in the potassium and argon budget of the Earth: Toward a resolution of the ‘missing argon’ problem. Geochem. Geophys. Geosyst. 5, doi:10.1029/2004GC000711 (2004)

  38. Wood, B. J. & Blundy, J. D. The effect of cation charge on crystal-melt partitioning of trace elements. Earth Planet. Sci. Lett. 188, 59–71 (2001)

    Article  ADS  CAS  Google Scholar 

  39. Parman, S. W., Kurz, M. D., Hart, S. R. & Grove, T. L. Solubility of helium in olivine at 1 atmosphere. Eos Trans. AGU 85, abstract U41A–0725 (2004)

  40. Staudacher, T. & Allègre, C. J. Terrestrial xenology. Earth Planet. Sci. Lett. 60, 389–406 (1982)

    Article  ADS  CAS  Google Scholar 

  41. Goldstein, S. L., O'Nions, R. K. & Hamilton, P. J. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth Planet. Sci. Lett. 70, 221–236 (1984)

    Article  ADS  CAS  Google Scholar 

  42. Farley, K. A., Maierreimer, E., Schlosser, P. & Broecker, W. S. Constraints on mantle He-3 fluxes and deep-sea circulation from an oceanic general circulation model. J. Geophys. Res. Solid Earth 100, 3829–3839 (1995)

    Article  CAS  Google Scholar 

  43. Hart, S. R. A large scale isotope anomaly in the southern hemisphere mantle. Nature 309, 753–757 (1984)

    Article  ADS  CAS  Google Scholar 

  44. Salters, V. J. M. & Stracke, A. Composition of the depleted mantle. Geochem. Geophys. Geosyst. 5, doi:10.1029/2003GC000597 (2004)

  45. Sun, S.-S. & McDonough, W. F. in Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.) 313–345 (Blackwell Scientific, Oxford/Boston, 1989)

    Google Scholar 

  46. Harper, C. L. & Jacobsen, S. B. Noble gases and Earth's accretion. Science 273, 1814–1818 (1996)

    Article  ADS  CAS  Google Scholar 

  47. Porcelli, D. & Ballentine, C. J. in Noble Gases in Geochemistry and Cosmochemistry (eds Porcelli, D., Ballentine, C. J. & Wieler, R.) 411–480 (Mineralogical Society of America, Washington DC, 2002)

    Book  Google Scholar 

  48. Tolstikhin, I. & Hofmann, A. W. Early crust on top of the Earth's core. Phys. Earth Planet. Inter. 148, 109–130 (2004)

    Article  ADS  Google Scholar 

  49. Lehnert, K., Su, Y., Langmuir, C., Sarbas, B. & Nohl, U. A global geochemical database structure for rocks. Geochem. Geophys. Geosyst. 1, doi:10.1029/1999GC000026 (2000)

Download references

Acknowledgements

We thank A. Abedini for sharing her noble gas database; W. White and D. Graham for comments that helped to improve the manuscript; A.W. Hofmann and A. Class for discussions. This study was supported by National Science Foundation grants. This is LDEO Contribution number 6791.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Class.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Methods

Details of global data compilation and data filters, grouping of ocean island into helium isotope groups. Details of model calculation of the incomplete degassing model for the Earth' mantle, as well as calculation of plume source formation ages. Discussion of consistency of neon isotopes with the incomplete degassing model. This file also contains additional references. (DOC 82 kb)

Supplementary Figure S1

Neon-helium isotope relationships in OIB and MORB. This figure shows that neon data are consistent with range of helium isotope ratios reflecting variable production rates of radiogenic 4He in plume sources with variable Th+U. (DOC 165 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Class, C., Goldstein, S. Evolution of helium isotopes in the Earth's mantle. Nature 436, 1107–1112 (2005). https://doi.org/10.1038/nature03930

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03930

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing