Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Somatic misexpression of germline P granules and enhanced RNA interference in retinoblastoma pathway mutants

Abstract

Caenorhabditis elegans homologues of the retinoblastoma (Rb) tumour suppressor complex specify cell lineage during development1,2. Here we show that mutations in Rb pathway components enhance RNA interference (RNAi) and cause somatic cells to express genes and elaborate perinuclear structures normally limited to germline-specific P granules. Furthermore, particular gene inactivations that disrupt RNAi reverse the cell lineage transformations of Rb pathway mutants. These findings suggest that mutations in Rb pathway components cause cells to revert to patterns of gene expression normally restricted to germ cells. Rb may act by a similar mechanism to transform mammalian cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rb pathway mutants are more sensitive to RNAi than wild-type animals.
Figure 2: Mutations in the Rb pathway cause soma to germline transformation and transgene silencing.
Figure 3: Inactivation of six RNAi factors suppresses the multiple vulvae phenotype of the Rb pathway mutants.

Similar content being viewed by others

References

  1. Lu, X. & Horvitz, H. R. lin-35 and lin-53, two genes that antagonize a C. elegans Ras pathway, encode proteins similar to Rb and its binding protein RbAp48. Cell 95, 981–991 (1998)

    Article  CAS  Google Scholar 

  2. Ceol, C. J. & Horvitz, H. R. dpl-1 DP and efl-1 E2F act with lin-35 Rb to antagonize Ras signalling in C. elegans vulval development. Mol. Cell 7, 461–473 (2001)

    Article  CAS  Google Scholar 

  3. Huang, L. S., Tzou, P. & Sternberg, P. W. The lin-15 locus encodes two negative regulators of Caenorhabditis elegans vulval development. Mol. Biol. Cell 5, 395–411 (1994)

    Article  CAS  Google Scholar 

  4. Hsieh, J. et al. The RING finger/B-box factor TAM-1 and a retinoblastoma-like protein LIN-35 modulate context-dependent gene silencing in Caenorhabditis elegans. Genes Dev. 13, 2958–2970 (1999)

    Article  CAS  Google Scholar 

  5. Kennedy, S., Wang, D. & Ruvkun, G. A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans. Nature 427, 645–649 (2004)

    Article  ADS  CAS  Google Scholar 

  6. Simmer, F. et al. Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Curr. Biol. 12, 1317–1319 (2002)

    Article  CAS  Google Scholar 

  7. Sieburth, D. et al. Systematic analysis of genes required for synapse structure and function. Nature doi:10.1038/nature03809 (this issue)

  8. Sijen, T. et al. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107, 465–476 (2001)

    Article  CAS  Google Scholar 

  9. Smardon, A. et al. EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C. elegans. Curr. Biol. 10, 169–178 (2000)

    Article  CAS  Google Scholar 

  10. Kawasaki, I. et al. PGL-1, a predicted RNA-binding component of germ granules, is essential for fertility in C. elegans. Cell 94, 635–645 (1998)

    Article  CAS  Google Scholar 

  11. Unhavaithaya, Y. et al. MEP-1 and a homolog of the NURD complex component Mi-2 act together to maintain germline-soma distinctions in C. elegans. Cell 111, 991–1002 (2002)

    Article  CAS  Google Scholar 

  12. Pitt, J. N., Schisa, J. A. & Priess, J. R. P granules in the germ cells of Caenorhabditis elegans adults are associated with clusters of nuclear pores and contain RNA. Dev. Biol. 219, 315–333 (2000)

    Article  CAS  Google Scholar 

  13. Kim, J. K. et al. Functional genomic analysis of RNA interference in C. elegans. Science 308, 1164–1167 (2005)

    Article  ADS  CAS  Google Scholar 

  14. Sijen, T. & Plasterk, R. H. Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature 426, 310–314 (2003)

    Article  ADS  CAS  Google Scholar 

  15. Robert, V. J., Sijen, T., van Wolfswinkel, J. & Plasterk, R. H. Chromatin and RNAi factors protect the C. elegans germline against repetitive sequences. Genes Dev. 19, 782–787 (2005)

    Article  CAS  Google Scholar 

  16. Klymenko, T. & Muller, J. The histone methyltransferases Trithorax and Ash1 prevent transcriptional silencing by Polycomb group proteins. EMBO Rep. 5, 373–377 (2004)

    Article  CAS  Google Scholar 

  17. Debernardi, S. et al. The MLL fusion partner AF10 binds GAS41, a protein that interacts with the human SWI/SNF complex. Blood 99, 275–281 (2002)

    Article  Google Scholar 

  18. Linder, B., Gerlach, N. & Jackle, H. The Drosophila homolog of the human AF10 is an HP1-interacting suppressor of position effect variegation. EMBO Rep. 2, 211–216 (2001)

    Article  CAS  Google Scholar 

  19. Braas, D., Gundelach, H. & Klempnauer, K. H. The glioma-amplified sequence 41 gene (GAS41) is a direct Myb target gene. Nucleic Acids Res. 32, 4750–4757 (2004)

    Article  CAS  Google Scholar 

  20. Lai, A. et al. RBP1 recruits the mSIN3-histone deacetylase complex to the pocket of retinoblastoma tumour suppressor family proteins found in limited discrete regions of the nucleus at growth arrest. Mol. Cell. Biol. 21, 2918–2932 (2001)

    Article  CAS  Google Scholar 

  21. Lewis, P. W. et al. Identification of a Drosophila Myb-E2F2/RBF transcriptional repressor complex. Genes Dev. 18, 2929–2940 (2004)

    Article  CAS  Google Scholar 

  22. Fong, Y., Bender, L., Wang, W. & Strome, S. Regulation of the different chromatin states of autosomes and X chromosomes in the germ line of C. elegans. Science 296, 2235–2238 (2002)

    Article  ADS  CAS  Google Scholar 

  23. Myers, T. R. & Greenwald, I. lin-35 Rb acts in the major hypodermis to oppose ras-mediated vulval induction in C. elegans. Dev. Cell 8, 117–123 (2005)

    Article  CAS  Google Scholar 

  24. Fischer, U., Meltzer, P. & Meese, E. Twelve amplified and expressed genes localized in a single domain in glioma. Hum. Genet. 98, 625–628 (1996)

    Article  CAS  Google Scholar 

  25. Streubel, B. et al. Amplification of the MLL gene on double minutes, a homogeneously staining region, and ring chromosomes in five patients with acute myeloid leukemia or myelodysplastic syndrome. Genes Chromosom. Cancer 27, 380–386 (2000)

    Article  CAS  Google Scholar 

  26. Verdel, A. et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303, 672–676 (2004)

    Article  ADS  CAS  Google Scholar 

  27. Pal-Bhadra, M. et al. Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303, 669–672 (2004)

    Article  ADS  CAS  Google Scholar 

  28. Couteau, F., Guerry, F., Muller, F. & Palladino, F. A heterochromatin protein 1 homologue in Caenorhabditis elegans acts in germline and vulval development. EMBO Rep. 3, 235–241 (2002)

    Article  CAS  Google Scholar 

  29. Black, E. P. et al. Distinct gene expression phenotypes of cells lacking Rb and Rb family members. Cancer Res. 63, 3716–3723 (2003)

    CAS  PubMed  Google Scholar 

  30. Godbout, R., Packer, M. & Bie, W. Overexpression of a DEAD box protein (DDX1) in neuroblastoma and retinoblastoma cell lines. J. Biol. Chem. 273, 21161–21168 (1998)

    Article  CAS  Google Scholar 

  31. Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R. C. & Melton, D. A. Stemness: transcriptional profiling of embryonic and adult stem cells. Science 298, 597–600 (2002)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. C. Andersen, W. G. Kelly, N. Dyson and V. Reineke for discussions; T. Sijen for reagents; H. Y. Mak for the unpublished tub-1::gfp transgene; J. Ahringer and M. Vidal for the feeding RNAi bacteria clones; S. Fischer for constructing the hand-picked RNAi library; S. Strome for the anti-PGL-1 antibodies; and E. C. Andersen, H. R. Horvitz, C. P. Hunter, F. Palladino, the Caenorhabditis Genetics Center and C. elegans Gene Knockout Consortium for some of the strains.Author Contributions D.W. conducted experiments and analysed data for all figures and tables, except for Figs 2a and 3b; S.K. made the initial observation of enhanced RNAi in lin-15 and synergistic enhancement of RNAi in eri-1; lin-15; D.C. did immunofluorescence staining of PGL-1 in Figs 1a and 3b; J.K.K., H.W.G. and R.S.K. identified 36 RNAi-defective genes that were tested by D.W. for their interaction with the Rb pathway; C.C.M. and G.R. were principal investigators.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Ruvkun.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Methods

Additional descriptions of methods used in this study. (PDF 17 kb)

Supplemenetary Table S1

The enhanced RNAi, but not the cell lineage defects, of Rb pathway mutants requires the canonical RNAi pathway. (PDF 41 kb)

Supplementary Table S2

Mutation in lin-15B releases the requirement of RNAi for the RNA-dependent RNA polymerase RRF-1. (PDF 9 kb)

Supplementary Figure S1 (PDF 2557 kb)

Supplementary Figure S2 (PDF 152 kb)

Supplementary Figure S3 (PDF 206 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D., Kennedy, S., Conte, D. et al. Somatic misexpression of germline P granules and enhanced RNA interference in retinoblastoma pathway mutants. Nature 436, 593–597 (2005). https://doi.org/10.1038/nature04010

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04010

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing