Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crossover from ‘mesoscopic’ to ‘universal’ phase for electron transmission in quantum dots

Abstract

The measurement of phase in coherent electron systems—that is, ‘mesoscopic’ systems such as quantum dots—can yield information about fundamental transport properties that is not readily apparent from conductance measurements. Phase measurements on relatively large quantum dots1 recently revealed that the phase evolution for electrons traversing the dots exhibits a ‘universal’ behaviour, independent of dot size, shape, and electron occupancy2,3. Specifically, for quantum dots in the Coulomb blockade regime, the transmission phase increases monotonically by π throughout each conductance peak; in the conductance valleys, the phase returns sharply to its starting value. The expected mesoscopic features in the phase evolution—related to the dot's shape, spin degeneracy or to exchange effects—have not been observed, and there is at present no satisfactory explanation for the observed universality in phase behaviour4. Here we report the results of phase measurements on a series of small quantum dots, having occupancies of between only 1–20 electrons, where the phase behaviour for electron transmission should in principle be easier to interpret. In contrast to the universal behaviour observed thus far only in the larger dots, we see clear mesoscopic features in the phase measurements when the dot occupancy is less than 10 electrons. As the occupancy increases, the manner of phase evolution changes and universal behaviour is recovered for some 14 electrons or more. The identification of a transition from the expected mesoscopic behaviour to universal phase evolution should help to direct and constrain theoretical models for the latter.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SEM micrograph of the device.
Figure 2: Electron counting in the quantum dot by a QPC detector.
Figure 3: Phase measurement procedure.
Figure 4: Phase evolution and coherent conductance for the first few electrons in the quantum dot.
Figure 5: Two examples of phase evolution for N = 5–8 with different tuning parameters of the quantum dot and the interferometer.
Figure 6: The quantum dot undergoes universal phase evolution after fourteen electrons have entered.

Similar content being viewed by others

References

  1. Van Houten, H., Beenakker, C. W. J. & Staring, A. A. W. in Single Charge Tunnelling - Coulomb Blockade Phenomena in Nanostructures (eds Grabert, H. & Devoret, M. H.) 167–216 (Plenum, New York, 1992)

    Book  Google Scholar 

  2. Schuster, R. et al. Phase measurement in a quantum dot via a double slit interference experiment. Nature 385, 417–420 (1997)

    Article  ADS  CAS  Google Scholar 

  3. Ji, Y., Heiblum, M., Sprinzak, D., Mahalu, D. & Shtrikman, H. Phase evolution in a Kondo-correlated system. Science 290, 779–783 (2000)

    Article  ADS  CAS  Google Scholar 

  4. Hackenbroich, G. Phase coherent transmission through interacting mesoscopic systems. Phys. Rep. 343, 463–538 (2001)

    Article  ADS  CAS  Google Scholar 

  5. Yacoby, A., Schuster, R. & Heiblum, M. Phase rigidity and h/2e oscillations in a single-ring Aharonov-Bohm experiment. Phys. Rev. B 53, 9583–9586 (1996)

    Article  ADS  CAS  Google Scholar 

  6. Aronov, A. G. & Sharvin, Yu. V. Magnetic flux effects in disordered conductors. Rev. Mod. Phys. 59, 755–779 (1987)

    Article  ADS  Google Scholar 

  7. Aharonov, Y. & Bohm, D. Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  8. Field, M. et al. Measurements of Coulomb blockade with a noninvasive voltage probe. Phys. Rev. Lett. 70, 1311–1314 (1993)

    Article  ADS  CAS  Google Scholar 

  9. Sprinzak, D., Ji, Y., Heiblum, M., Mahalu, D. & Shtrikman, H. Charge distribution in a Kondo correlated quantum dot. Phys. Rev. Lett. 88, 176805 (2002)

    Article  ADS  CAS  Google Scholar 

  10. Breit, G. & Wigner, E. Capture of slow neutrons. Phys. Rev. 49, 519–531 (1936)

    Article  ADS  CAS  Google Scholar 

  11. Hackenbroich, G. & Weidenmüller, H. A. Transmission through a quantum dot in an Aharonov-Bohm ring. Phys. Rev. Lett. 76, 110–113 (1996)

    Article  ADS  CAS  Google Scholar 

  12. Weidenmüller, H. A. Transmission phase of an isolated CB resonance. Phys. Rev. B 65, 245322 (2002)

    Article  ADS  Google Scholar 

  13. Aharony, A., Entin-Wohlman, O., Halperin, B. I. & Imry, Y. Phase measurement in the mesoscopic AB interferometer. Phys. Rev. B 66, 115311 (2002)

    Article  ADS  Google Scholar 

  14. Levy Yeyati, A. & Büttiker, M. Scattering phases in quantum dots: An analysis based on lattice models. Phys. Rev. B 62, 7307–7315 (2000)

    Article  ADS  CAS  Google Scholar 

  15. Silvestrov, P. G. & Imry, Y. Towards an explanation of the mesoscopic double-slit experiment: A new model for charging of a quantum dot. Phys. Rev. Lett. 85, 2565–2568 (2000)

    Article  ADS  CAS  Google Scholar 

  16. Silvestrov, P. G. & Imry, Y. Spin effects and transport in QD with overlapping resonances. Phys. Rev. B 65, 035309 (2002)

    Article  ADS  Google Scholar 

  17. Silva, A., Oreg, Y. & Gefen, Y. The signs of QD lead matrix elements: The effect on transport vs. spectral properties. Phys. Rev. B 66, 195316 (2002)

    Article  ADS  Google Scholar 

  18. Oreg, Y. & Gefen, Y. Electron scattering through a quantum dot: A phase lapse mechanism. Phys. Rev. B 55, 13726–13729 (1997)

    Article  ADS  CAS  Google Scholar 

  19. Lee, H. W. Generic transmission zeros and in-phase resonances in time-reversal symmetric single channel transport. Phys. Rev. Lett. 82, 2358–2361 (1999)

    Article  ADS  CAS  Google Scholar 

  20. Entin-Wohlman, O., Aharony, A., Imry, Y. & Levinson, Y. The Fano effect in AB interferometers. J. Low Temp. Phys. 126, 1251–1273 (2002)

    Article  ADS  CAS  Google Scholar 

  21. Büttiker, M. 4-Terminal phase-coherent conductance. Phys. Rev. Lett. 57, 1761–1764 (1986)

    Article  ADS  Google Scholar 

  22. Kouwenhoven, L. P., Oosterkamp, T. H., Tarucha, S., Austing, D. G. & Honda, H. Coulomb oscillations in few-electron quantum dot. Physica B 249–251, 191–196 (1998)

    Article  ADS  Google Scholar 

  23. Zumbuhl, D. M., Marcus, C. M., Hanson, M. P. & Gossard, A. C. Voltage-tunable singlet-triplet transition in lateral quantum dots. Phys. Rev. B 66, 035320 (2002)

    Article  Google Scholar 

  24. Kyriakidis, J., Pioro-Ladriere, M., Ciorga, M., Sachrajda, A. S. & Hawrylak, P. Cotunneling spectroscopy in few electron QDs. Phys. Rev. Lett. 93, 256801 (2004)

    Article  Google Scholar 

  25. Ashcroft, N. W. & Mermin, N. D. Solid State Physics Ch. 32 (Holt, Rinehart and Winston, Orlando, 1976)

    MATH  Google Scholar 

  26. Oreg, Y., Brouwer, P. W., Waintal, X. & Halperin, B. I. in Nano-Physics and Bio-Electronics (eds Chakraborty, T., Peeters, F. & Sivan, U.) Ch. 5 (Elsevier, Amsterdam, 2002)

    Google Scholar 

Download references

Acknowledgements

The work was partly supported by the Minerva foundation, the German Israeli Project Cooperation (DIP), the German Israeli Foundation (GIF), and the QUACS network. We are grateful to Y. Levinson, Y. Oreg and A. Yacoby for discussions. We thank M. Popadic for collaboration in the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Heiblum.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avinun-Kalish, M., Heiblum, M., Zarchin, O. et al. Crossover from ‘mesoscopic’ to ‘universal’ phase for electron transmission in quantum dots. Nature 436, 529–533 (2005). https://doi.org/10.1038/nature03899

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03899

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing