Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Trans-SNARE pairing can precede a hemifusion intermediate in intracellular membrane fusion

Abstract

The question concerning whether all membranes fuse according to the same mechanism has yet to be answered satisfactorily. During fusion of model membranes or viruses, membranes dock, the outer membrane leaflets mix (termed hemifusion), and finally the fusion pore opens and the contents mix1,2. Viral fusion proteins consist of a membrane-disturbing ‘fusion peptide’ and a helical bundle that pin the membranes together2,3,4. Although SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complexes form helical bundles with similar topology, it is unknown whether SNARE-dependent fusion events on intracellular membranes proceed through a hemifusion state. Here we identify the first hemifusion state for SNARE-dependent fusion of native membranes, and place it into a sequence of molecular events: formation of helical bundles by SNAREs precedes hemifusion; further progression to pore opening requires additional peptides. Thus, SNARE-dependent fusion may proceed along the same pathway as viral fusion: both use a docking mechanism via helical bundles5,6 and additional peptides to destabilize the membrane and efficiently induce lipid mixing7,8,9. Our results suggest that a common lipidic intermediate3 may underlie all fusion reactions of lipid bilayers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lipid mixing between vacuoles from priming and docking mutants.
Figure 2: Inhibitor sensitivity of lipid mixing.
Figure 3: Lipid mixing in the vacuolar V0 knockout Δvph1.
Figure 4: Sensitivity of lipid and content mixing to inhibitors.
Figure 5: Morphometric analysis of content mixing.

Similar content being viewed by others

References

  1. Zimmerberg, J. & Chernomordik, L. V. Membrane fusion. Adv. Drug Deliv. Rev. 38, 197–205 (1999)

    Article  CAS  Google Scholar 

  2. Cohen, F. S. & Melikyan, G. B. The energetics of membrane fusion from binding, through hemifusion, pore formation, and pore enlargement. J. Membr. Biol. 199, 1–14 (2004)

    Article  CAS  Google Scholar 

  3. Chernomordik, L. V. & Kozlov, M. M. Protein-lipid interplay in fusion and fission of biological membranes. Annu. Rev. Biochem. 72, 175–207 (2003)

    Article  CAS  Google Scholar 

  4. Tamm, L. K., Han, X., Li, Y. & Lai, A. L. Structure and function of membrane fusion peptides. Biopolymers 66, 249–260 (2002)

    Article  CAS  Google Scholar 

  5. Eckert, D. M. & Kim, P. S. Mechanisms of viral membrane fusion and its inhibition. Annu. Rev. Biochem. 70, 777–810 (2001)

    Article  CAS  Google Scholar 

  6. Sutton, R. B., Fasshauer, D., Jahn, R. & Brunger, A. T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395, 347–353 (1998)

    Article  ADS  CAS  Google Scholar 

  7. Han, X., Bushweller, J. H., Cafiso, D. S. & Tamm, L. K. Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin. Nature Struct. Biol. 8, 715–720 (2001)

    Article  CAS  Google Scholar 

  8. Qiao, H., Armstrong, R. T., Melikyan, G. B., Cohen, F. S. & White, J. M. A specific point mutant at position 1 of the influenza hemagglutinin fusion peptide displays a hemifusion phenotype. Mol. Biol. Cell 10, 2759–2769 (1999)

    Article  CAS  Google Scholar 

  9. Tucker, W. C., Weber, T. & Chapman, E. R. Reconstitution of Ca2+-regulated membrane fusion by synaptotagmin and SNAREs. Science 304, 435–438 (2004)

    Article  ADS  CAS  Google Scholar 

  10. Wickner, W. Yeast vacuoles and membrane fusion pathways. EMBO J. 21, 1241–1247 (2002)

    Article  CAS  Google Scholar 

  11. Mayer, A., Wickner, W. & Haas, A. Sec18p (NSF)-driven release of Sec17p (α-SNAP) can precede docking and fusion of yeast vacuoles. Cell 85, 83–94 (1996)

    Article  CAS  Google Scholar 

  12. Kaiser, C. A. & Schekman, R. Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway. Cell 61, 723–733 (1990)

    Article  CAS  Google Scholar 

  13. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998)

    Article  CAS  Google Scholar 

  14. Peters, C. & Mayer, A. Ca2+/calmodulin signals the completion of docking and triggers a late step of vacuole fusion. Nature 396, 575–580 (1998)

    Article  ADS  CAS  Google Scholar 

  15. Merz, A. J. & Wickner, W. T. Trans-SNARE interactions elicit Ca2+ efflux from the yeast vacuole lumen. J. Cell Biol. 164, 195–206 (2004)

    Article  CAS  Google Scholar 

  16. Bayer, M. J., Reese, C., Buhler, S., Peters, C. & Mayer, A. Vacuole membrane fusion: V0 functions after trans-SNARE pairing and is coupled to the Ca2+-releasing channel. J. Cell Biol. 162, 211–222 (2003)

    Article  CAS  Google Scholar 

  17. Thorngren, N., Collins, K. M., Fratti, R. A., Wickner, W. & Merz, A. J. A soluble SNARE drives rapid docking, bypassing ATP and Sec17/18p for vacuole fusion. EMBO J. 23, 2765–2776 (2004)

    Article  CAS  Google Scholar 

  18. Wang, Y. X., Kauffman, E. J., Duex, J. E. & Weisman, L. S. Fusion of docked membranes requires the armadillo repeat protein Vac8p. J. Biol. Chem. 276, 35133–35140 (2001)

    Article  CAS  Google Scholar 

  19. Reese, C. & Mayer, A. The rate limiting step of vacuolar membrane fusion follows trans-SNARE pairing and lipid-mixing. J. Cell Biol. (submitted)

  20. Peters, C. et al. Control of the terminal step of intracellular membrane fusion by protein phosphatase 1. Science 285, 1084–1087 (1999)

    Article  CAS  Google Scholar 

  21. Peters, C. et al. Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion. Nature 409, 581–588 (2001)

    Article  ADS  CAS  Google Scholar 

  22. Wang, L., Seeley, E. S., Wickner, W. & Merz, A. J. Vacuole fusion at a ring of vertex docking sites leaves membrane fragments within the organelle. Cell 108, 357–369 (2002)

    Article  CAS  Google Scholar 

  23. Vogel, S. S., Leikina, E. A. & Chernomordik, L. V. Lysophosphatidylcholine reversibly arrests exocytosis and viral fusion at a stage between triggering and membrane merger. J. Biol. Chem. 268, 25764–25768 (1993)

    CAS  PubMed  Google Scholar 

  24. Hiesinger, P. R. et al. The v-ATPase V0 subunit a1 is required for a late step in synaptic vesicle exocytosis in Drosophila . Cell 121, 607–620 (2005)

    Article  CAS  Google Scholar 

  25. Epand, R. M. Fusion peptides and the mechanism of viral fusion. Biochim. Biophys. Acta 1614, 116–121 (2003)

    Article  CAS  Google Scholar 

  26. Ungermann, C., Sato, K. & Wickner, W. Defining the functions of trans-SNARE pairs. Nature 396, 543–548 (1998)

    Article  ADS  CAS  Google Scholar 

  27. Coorssen, J. R. et al. Regulated secretion: SNARE density, vesicle fusion and calcium dependence. J. Cell Sci. 116, 2087–2097 (2003)

    Article  CAS  Google Scholar 

  28. Szule, J. A. et al. Calcium-triggered membrane fusion proceeds independently of specific presynaptic proteins. J. Biol. Chem. 278, 24251–24254 (2003)

    Article  CAS  Google Scholar 

  29. Lindau, M. & Almers, W. Structure and function of fusion pores in exocytosis and ectoplasmic membrane fusion. Curr. Opin. Cell Biol. 7, 509–517 (1995)

    Article  CAS  Google Scholar 

  30. Zimmerberg, J. How can proteolipids be central players in membrane fusion? Trends Cell Biol. 11, 233–235 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Reinhardt, A. Schmidt and V. Comte for assistance, and N. Garin and M. Allegrini for help with confocal microscopy. This work was supported by grants from DFG, FNS, HFSP and Boehringer Ingelheim.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Mayer.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figure S1

Rhodamine-phosphatidylethanolamine (Rh-PE) incorporation into isolated vacuoles. (PDF 330 kb)

Supplementary Figure S2

GTPγS blocks maturation of pro-ALP that occurs by fusion. (PDF 75 kb)

Supplementary Figure S3

Confocal images of fusion of calcein-labelled vacuoles. (PDF 41 kb)

Supplementary Figure S4

Chemical structure of calcein, sulforhodamine B, and rhodamine-phosphatidylethanolamine (Rh-PE) (PDF 6 kb)

Supplementary Figure S5

Working model on the events in vacuole fusion. (PDF 7 kb)

Supplementary Figure Legends

This file contains the legends for the Supplementary Figures S1-S5. (DOC 22 kb)

Supplementary Data

Contains a detailed description and discussion of the establishment of the rhodamine-phosphatidylethanolamine based lipid-mixing assay. In a second part, control experiments concerning the inhibitory GTPγS effect on vacuolar membrane fusion are presented and discussed. Supplementary references are provided at the end of the document. (DOC 30 kb)

Supplementary Methods

Contains a description of reagents, strains used and methods not listed in the main text and Supplementary References. (DOC 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reese, C., Heise, F. & Mayer, A. Trans-SNARE pairing can precede a hemifusion intermediate in intracellular membrane fusion. Nature 436, 410–414 (2005). https://doi.org/10.1038/nature03722

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03722

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing