Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Regulation of Mycobacterium tuberculosis cell envelope composition and virulence by intramembrane proteolysis

Abstract

Mycobacterium tuberculosis infection is a continuing global health crisis that kills 2 million people each year1. Although the structurally diverse lipids of the M. tuberculosis cell envelope each have non-redundant roles in virulence or persistence2,3,4,5,6,7, the molecular mechanisms regulating cell envelope composition in M. tuberculosis are undefined. In higher eukaryotes, membrane composition is controlled by site two protease (S2P)-mediated cleavage of sterol regulatory element binding proteins8,9, membrane-bound transcription factors that control lipid biosynthesis. S2P is the founding member of a widely distributed family of membrane metalloproteases10,11 that cleave substrate proteins within transmembrane segments12. Here we show that a previously uncharacterized M. tuberculosis S2P homologue (Rv2869c) regulates M. tuberculosis cell envelope composition, growth in vivo and persistence in vivo. These results establish that regulated intramembrane proteolysis is a conserved mechanism controlling membrane composition in prokaryotes and show that this proteolysis is a proximal regulator of cell envelope virulence determinants in M. tuberculosis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rv2869c is a non-essential intramembrane cleaving protease (iCLIP) of pathogenic mycobacteria.
Figure 2: Rv2869c and its proteolytic activity are required for mycobacterial cording.
Figure 3: Rv2869c transcriptionally regulates the extractable mycolic acid composition of the mycobacterial cell envelope.
Figure 4: Rv2869c is required for both M. tuberculosis replication and persistence in mice.

Similar content being viewed by others

References

  1. WHO. Global Tuberculosis Control: Surveillance, Planning, Financing (World Health Organization, Geneva, 2004)

    Google Scholar 

  2. Glickman, M. S., Cox, J. S. & Jacobs, W. R. Jr. A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol. Cell 5, 717–727 (2000)

    Article  CAS  Google Scholar 

  3. Reed, M. B. et al. A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature 431, 84–87 (2004)

    Article  CAS  ADS  Google Scholar 

  4. Cox, J. S., Chen, B., McNeil, M. & Jacobs, W. R. Jr. Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402, 79–83 (1999)

    Article  CAS  ADS  Google Scholar 

  5. Gao, L. Y. et al. Requirement for kasB in Mycobacterium mycolic acid biosynthesis, cell wall impermeability and intracellular survival: implications for therapy. Mol. Microbiol. 49, 1547–1563 (2003)

    Article  CAS  Google Scholar 

  6. Dubnau, E. et al. Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol. Microbiol. 36, 630–637 (2000)

    Article  CAS  Google Scholar 

  7. Rao, V., Fujiwara, N., Porcelli, S. A. & Glickman, M. S. Mycobacterium tuberculosis controls host innate immune activation through cyclopropane modification of a glycolipid effector molecule. J. Exp. Med. 201, 535–543 (2005)

    Article  CAS  Google Scholar 

  8. Brown, M. S., Ye, J., Rawson, R. B. & Goldstein, J. L. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100, 391–398 (2000)

    Article  CAS  Google Scholar 

  9. Sakai, J. et al. Sterol-regulated release of SREBP-2 from cell membranes requires two sequential cleavages, one within a transmembrane segment. Cell 85, 1037–1046 (1996)

    Article  CAS  Google Scholar 

  10. Rawson, R. B. et al. Complementation cloning of S2P, a gene encoding a putative metalloprotease required for intramembrane cleavage of SREBPs. Mol. Cell 1, 47–57 (1997)

    Article  CAS  Google Scholar 

  11. Duncan, E. A., Dave, U. P., Sakai, J., Goldstein, J. L. & Brown, M. S. Second-site cleavage in sterol regulatory element-binding protein occurs at transmembrane junction as determined by cysteine panning. J. Biol. Chem. 273, 17801–17809 (1998)

    Article  CAS  Google Scholar 

  12. Weihofen, A. & Martoglio, B. Intramembrane-cleaving proteases: controlled liberation of proteins and bioactive peptides. Trends Cell Biol. 13, 71–78 (2003)

    Article  CAS  Google Scholar 

  13. Rudner, D. Z., Fawcett, P. & Losick, R. A family of membrane-embedded metalloproteases involved in regulated proteolysis of membrane-associated transcription factors. Proc. Natl Acad. Sci. USA 96, 14765–14770 (1999)

    Article  CAS  ADS  Google Scholar 

  14. Cutting, S., Roels, S. & Losick, R. Sporulation operon spoIVF and the characterization of mutations that uncouple mother-cell from forespore gene expression in Bacillus subtilis. J. Mol. Biol. 221, 1237–1256 (1991)

    Article  CAS  Google Scholar 

  15. Alba, B. M., Leeds, J. A., Onufryk, C., Lu, C. Z. & Gross, C. A. DegS and YaeL participate sequentially in the cleavage of RseA to activate the σE-dependent extracytoplasmic stress response. Genes Dev. 16, 2156–2168 (2002)

    Article  CAS  Google Scholar 

  16. Kanehara, K., Ito, K. & Akiyama, Y. YaeL (EcfE) activates the σE pathway of stress response through a site-2 cleavage of anti-σE, RseA. Genes Dev. 16, 2147–2155 (2002)

    Article  CAS  Google Scholar 

  17. Chen, J. C., Viollier, P. H. & Shapiro, L. A membrane metalloprotease participates in the sequential degradation of a Caulobacter polarity determinant. Mol. Microbiol. 55, 1085–1103 (2005)

    Article  CAS  Google Scholar 

  18. Bardarov, S. et al. Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiol. 148, 3007–3017 (2002)

    Article  CAS  Google Scholar 

  19. Kuzuyama, T., Takahashi, S., Takagi, M. & Seto, H. Characterization of 1-deoxy-d-xylulose 5-phosphate reductoisomerase, an enzyme involved in isopentenyl diphosphate biosynthesis, and identification of its catalytic amino acid residues. J. Biol. Chem. 275, 19928–19932 (2000)

    Article  CAS  Google Scholar 

  20. Altincicek, B. et al. GcpE is involved in the 2-C-methyl-d-erythritol 4-phosphate pathway of isoprenoid biosynthesis in Escherichia coli. J. Bacteriol. 183, 2411–2416 (2001)

    Article  CAS  Google Scholar 

  21. Horton, J. D. et al. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc. Natl Acad. Sci. USA 100, 12027–12032 (2003)

    Article  CAS  ADS  Google Scholar 

  22. Gilleron, M., Quesniaux, V. F. & Puzo, G. Acylation state of the phosphatidylinositol hexamannosides from Mycobacterium bovis Bacillus Calmette Guérin and Mycobacterium tuberculosis H37Rv and its implication in Toll-like receptor response. J. Biol. Chem. 278, 29880–29889 (2003)

    Article  CAS  Google Scholar 

  23. Kremer, L. et al. Characterization of a putative alpha-mannosyltransferase involved in phosphatidylinositol trimannoside biosynthesis in Mycobacterium tuberculosis. Biochem. J. 363, 437–447 (2002)

    Article  CAS  Google Scholar 

  24. Cohen-Gonsaud, M. et al. The structure of a resuscitation-promoting factor domain from Mycobacterium tuberculosis shows homology to lysozymes. Nature Struct. Mol. Biol. 12, 270–273 (2005)

    Article  CAS  Google Scholar 

  25. Glickman, M. S. & Jacobs, W. R. Jr Microbial pathogenesis of Mycobacterium tuberculosis: dawn of a discipline. Cell 104, 477–485 (2001)

    Article  CAS  Google Scholar 

  26. Schaible, U. E. et al. Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis. Nature Med. 9, 1039–1046 (2003)

    Article  CAS  ADS  Google Scholar 

  27. Rhoades, E. et al. Identification and macrophage-activating activity of glycolipids released from intracellular Mycobacterium bovis BCG. Mol. Microbiol. 48, 875–888 (2003)

    Article  CAS  Google Scholar 

  28. Vergne, I. et al. Mycobacterium tuberculosis phagosome maturation arrest: mycobacterial phosphatidylinositol analog phosphatidylinositol mannoside stimulates early endosomal fusion. Mol. Biol. Cell 15, 751–760 (2004)

    Article  CAS  Google Scholar 

  29. Hingley-Wilson, S. M., Sambandamurthy, V. K. & Jacobs, W. R. Jr Survival perspectives from the world's most successful pathogen, Mycobacterium tuberculosis. Nature Immunol. 4, 949–955 (2003)

    Article  CAS  Google Scholar 

  30. Schobel, S., Zellmeier, S., Schumann, W. & Wiegert, T. The Bacillus subtilis sigmaW anti-sigma factor RsiW is degraded by intramembrane proteolysis through YluC. Mol. Microbiol. 52, 1091–1105 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

We thank P. Bongiorno and F. Gao for technical support; V. Rao, N. Serbina, P. Wong and N. Stephanou for discussions; and A. Viale and the Genomics Core Lab of the Memorial Sloan-Kettering Cancer Center for assistance with microarray experiments. M.S.G. is supported by an NIH grant, the Ellison Medical Foundation, and the Speakers Fund for Biomedical Research awarded by the City of New York.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Glickman.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures S1-S6 and their Supplementary Figure Legends. (PDF 447 kb)

Supplementary Tables

This file contains Supplementary Tables S1 and S2. (PDF 94 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makinoshima, H., Glickman, M. Regulation of Mycobacterium tuberculosis cell envelope composition and virulence by intramembrane proteolysis. Nature 436, 406–409 (2005). https://doi.org/10.1038/nature03713

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03713

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing