Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An integrated view of the chemistry and mineralogy of martian soils

An Erratum to this article was published on 11 August 2005

Abstract

The mineralogical and elemental compositions of the martian soil are indicators of chemical and physical weathering processes. Using data from the Mars Exploration Rovers, we show that bright dust deposits on opposite sides of the planet are part of a global unit and not dominated by the composition of local rocks. Dark soil deposits at both sites have similar basaltic mineralogies, and could reflect either a global component or the general similarity in the compositions of the rocks from which they were derived. Increased levels of bromine are consistent with mobilization of soluble salts by thin films of liquid water, but the presence of olivine in analysed soil samples indicates that the extent of aqueous alteration of soils has been limited. Nickel abundances are enhanced at the immediate surface and indicate that the upper few millimetres of soil could contain up to one per cent meteoritic material.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microscopic Imager images, each 3 cm across.
Figure 2: Correlations between APXS elemental chemistry and iron mineral phases measured by Mössbauer 26 in Gusev soils.
Figure 3: Composition of martian surface materials.
Figure 4: Average Pancam 11-colour spectra of bright surface dust and dark soil at the Gusev and Meridiani sites.
Figure 5: Comparison of orbital (TES) and surface (Mini-TES) thermal infrared spectra.
Figure 6: Ratios of bright surface dust to dark soil exhibit similar trends for Gusev (red) and Meridiani (blue).

References

  1. Binder, A. B. et al. The geology of the Viking Lander 1 Site. J. Geophys. Res. 82, 4439–4451 (1977)

    Article  ADS  Google Scholar 

  2. Mutch, T. A., Arvidson, R. E., Binder, A. B., Guinness, E. A. & Morris, E. C. The geology of the Viking 2 Site. J. Geophys. Res. 82, 4452–4467 (1977)

    Article  ADS  Google Scholar 

  3. Clark, B. C. et al. Chemical composition of the Martian Fines. J. Geophys. Res. 87, 10059–10067 (1982)

    Article  ADS  CAS  Google Scholar 

  4. Clark, B. C. et al. The Viking X ray fluorescence experiment: Analytical methods and early results. J. Geophys. Res. 82, 4577–4594 (1977)

    Article  ADS  CAS  Google Scholar 

  5. Golombek, M. P. et al. Overview of the Mars Pathfinder Mission and assessment of landing site predictions. Science 278, 1743–1748 (1997)

    Article  ADS  CAS  Google Scholar 

  6. Rieder, R., Wanke, H., Economou, T. & Turkevich, A. Determination of the chemical composition of Martian soil and rocks: The alpha proton X ray spectrometer. J. Geophys. Res. 102, 4027–4044 (1997)

    Article  ADS  CAS  Google Scholar 

  7. Brückner, J., Dreibus, G., Rieder, R. & Wänke, H. Refined data of Alpha Proton X-ray Spectrometer analyses of soils and rocks at the Mars Pathfinder site: Implications for surface chemistry. J. Geophys. Res. 108, doi:10.1029/2003JE002060 (2003)

  8. Foley, C. N., Economou, T. & Clayton, R. N. Final chemical results from the Mars Pathfinder alpha proton X-ray spectrometer. J. Geophys. Res. 108, doi:10.1029/2003JE002019 (2003)

  9. Bishop, J. L., Murchie, S. L., Pieters, C. M. & Zent, A. P. A model of dust, soil, and rock coatings on Mars: Physical and chemical processes on the Martian surface. J. Geophys. Res. 107, doi:10.1029/2001JE001581 (2002)

  10. Huck, F. O. et al. Spectrophotometric and color estimates of the Viking Lander sites. J. Geophys. Res. 82, 4401–4411 (1977)

    Article  ADS  CAS  Google Scholar 

  11. Smith, P. H. et al. Results from the Mars Pathfinder camera. Science 278, 1758–1765 (1997)

    Article  ADS  CAS  Google Scholar 

  12. Squyres, S. W. et al. The Spirit Rover's Athena Science Investigation at Gusev Crater, Mars. Science 305, 794–799 (2004)

    Article  ADS  CAS  Google Scholar 

  13. Squyres, S. W. et al. The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars. Science 306, 1698–1703 (2004)

    Article  ADS  CAS  Google Scholar 

  14. Bell, J. F. III et al. Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation. J. Geophys. Res. 108, doi:10.1029/2003JE002070 (2003)

  15. Christensen, P. R. et al. Miniature Thermal Emission Spectrometer for the Mars Exploration Rovers. J. Geophys. Res. 108, doi:10.1029/2003JE002117 (2003)

  16. Herkenhoff, K. E. et al. Athena Microscopic Imager investigation. J. Geophys. Res. 108, doi:10.1029/2003JE002076 (2003)

  17. Klingelhöfer, G. et al. Athena MIMOS II Mössbauer spectrometer investigation. J. Geophys. Res. 108, doi:10.1029/2003JE002138 (2003)

  18. Rieder, R. et al. The new Athena alpha particle X-ray spectrometer for the Mars Exploration Rovers. J. Geophys. Res. 108, doi:10.1029/2003JE002150 (2003)

  19. Gorevan, S. P. et al. Rock abrasion tool: Mars Exploration Rover mission. J. Geophys. Res. 108, doi:10.1029/2003JE002061 (2003)

  20. Madsen, M. B. et al. Magnetic properties experiments on the Mars Exploration Rover mission. J. Geophys. Res. 108, doi:10.1029/2002JE002029 (2003)

  21. Arvidson, R. E. et al. Localization and physical properties experiments conducted by Spirit at Gusev Crater. Science 305, 821–824 (2004)

    Article  ADS  CAS  Google Scholar 

  22. Klingelhöfer, G. et al. Jarosite and hematite at Meridiani Planum from Opportunity's Mössbauer spectrometer. Science 306, 1740–1745 (2004)

    Article  ADS  Google Scholar 

  23. Christensen, P. R. et al. Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evidence for near-surface water. J. Geophys. Res. 105, 9623–9642 (2000)

    Article  ADS  CAS  Google Scholar 

  24. Soderblom, L. A. et al. The soils of Eagle Crater and Meridiani Planum. Science 306, 1723–1726 (2004)

    Article  ADS  CAS  Google Scholar 

  25. Gellert, R. et al. Chemistry of rocks and soils in Gusev Crater from the Alpha Particle X-ray spectrometer. Science 305, 829–832 (2004)

    Article  ADS  CAS  Google Scholar 

  26. Morris, R. V. et al. Mineralogy at Gusev crater from the Mössbauer spectrometer on the Spirit rover. Science 305, 833–836 (2004)

    Article  ADS  CAS  Google Scholar 

  27. Lane, M. D., Dyar, M. D. & Bishop, J. L. Spectroscopic evidence for hydrous iron sulfate in the Martian soil. Geophys. Res. Lett. 31, L19702, doi:10.1029/2004GL021231 (2004)

    Article  ADS  Google Scholar 

  28. Bell, J. F. III et al. Mineralogic and compositional properties of martian soil and dust: results from Mars Pathfinder. J. Geophys. Res. 105, 1721–1755 (2000)

    Article  ADS  CAS  Google Scholar 

  29. Adams, J. B. & McCord, T. B. Mars: interpretation of spectral reflectivity of light and dark regions. J. Geophys. Res. 74, 4851–4856 (1969)

    Article  ADS  CAS  Google Scholar 

  30. Morris, R. V. et al. Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: Evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples. J. Geophys. Res. 105, 1757–1817 (2000)

    Article  ADS  CAS  Google Scholar 

  31. Bandfield, J. L. & Smith, M. D. Multiple emission angle surface-atmosphere separations of Thermal Emission Spectrometer data. Icarus 161, 47–65 (2003)

    Article  ADS  Google Scholar 

  32. Christensen, P. R. et al. Initial results from the Mini-TES experiment in Gusev crater from the Spirit rover. Science 305, 837–842 (2004)

    Article  ADS  CAS  Google Scholar 

  33. Christensen, P. R. et al. Mineralogy at Meridiani Planum from the Mini-TES experiment on the Opportunity rover. Science 306, 1733–1739 (2004)

    Article  ADS  CAS  Google Scholar 

  34. Goetz, W. et al. Indication of drier periods on Mars from the chemistry and mineralogy of atmospheric dust. Nature doi: 10.1038/nature03807

  35. Bertelsen, P. et al. Magnetic properties experiments on the Mars Exploration Rover Spirit at Gusev crater. Science 305, 827–829 (2004)

    Article  ADS  CAS  Google Scholar 

  36. Rieder, R. et al. Chemical composition of martian rocks and soils at Meridiani Planum from the Alpha Particle X-ray spectrometer. Science 306, 1746–1749 (2004)

    Article  ADS  CAS  Google Scholar 

  37. Bell, J. F. III et al. Pancam multispectral imaging results from the Opportunity rover at Meridiani Planum. Science 306, 1703–1709 (2004)

    Article  ADS  CAS  Google Scholar 

  38. Bell, J. F. III et al. Pancam multispectral imaging results from the Spirit rover at Gusev crater. Science 305, 800–806 (2004)

    Article  ADS  CAS  Google Scholar 

  39. Bandfield, J. L., Hamilton, V. E. & Christensen, P. R. A global view of Martian volcanic compositions. Science 287, 1626–1630 (2000)

    Article  ADS  CAS  Google Scholar 

  40. Christensen, P. R., Bandfield, J. L., Smith, M. D., Hamilton, V. E. & Clark, R. N. Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data. J. Geophys. Res. 105, 9609–9622 (2000)

    Article  ADS  CAS  Google Scholar 

  41. Hamilton, V. E., Wyatt, M. B., McSween, H. Y. & Christensen, P. R. Analysis of terrestrial and martian volcanic compositions using thermal emission spectroscopy: II. Application to martian surface spectra from MGS TES. J. Geophys. Res. 106, 14733–14747 (2001)

    Article  ADS  CAS  Google Scholar 

  42. McSween, H. Y. et al. Basaltic rocks analyzed by the Spirit rover in Gusev crater. Science 305, 842–845 (2004)

    Article  ADS  CAS  Google Scholar 

  43. McLennan, S. M. Chemical composition of Martian soil and rocks: complex mixing and sedimentary transport. Geophys. Res. Lett. 27, 1335–1338 (2000)

    Article  ADS  CAS  Google Scholar 

  44. Clark, B. C. & Baird, A. K. Is the Martian lithosphere sulfur rich? J. Geophys. Res. 84, 8395–8403 (1979)

    Article  ADS  CAS  Google Scholar 

  45. Anders, E. & Grevesse, N. Abundances of the elements: meteoritic and solar. Geochim. Cosmochim. Acta 53, 197–214 (1989)

    Article  ADS  CAS  Google Scholar 

  46. Flynn, G. J. & McKay, D. S. An assessment of the meteoritic contribution to the martian soil. J. Geophys. Res. 95, 14497–14509 (1990)

    Article  ADS  Google Scholar 

  47. Yen, A. S. Composition and color of martian soil from oxidation of meteoritic material. Lunar Planet. Sci. Conf. XXXII, 1766 (2001)

  48. Ganapathy, R., Keays, R. R., Laul, J. C. & Anders, E. Proc. Apollo 11 Lunar Sci. Conf. Vol. 2 Chemical and Isotope Analyses 1117–1142 (Pergamon, New York, 1970)

    Google Scholar 

Download references

Acknowledgements

We thank the members of the MER project who enable daily science observations at the Spirit and Opportunity landing sites. We thank J. Bishop and H. Newsom for providing reviews. The work described in this paper was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert S. Yen.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figure Legends

Legends to accompany Supplementary Figures A-C. (DOC 19 kb)

Supplementary Figure A

Dark soil Mössbauer spectra from Gusev (red) and Meridiani (black) are essentially identical. (PDF 15 kb)

Supplementary Figure B

Soil to rock composition ratios. (PDF 29 kb)

Supplementary Figure C

Limits on meteoritic contribution at Gusev Crater. (PDF 29 kb)

Supplementary Table A

APXS data of soil end-member components. (PDF 22 kb)

Supplementary Table B

Accuracy of APXS data. (PDF 16 kb)

Supplementary Table C

Two-sigma statistical uncertainties associated with APXS data listed in Supplementary Table A. (PDF 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yen, A., Gellert, R., Schröder, C. et al. An integrated view of the chemistry and mineralogy of martian soils. Nature 436, 49–54 (2005). https://doi.org/10.1038/nature03637

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03637

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing