Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Short-lived orogenic cycles and the eclogitization of cold crust by spasmodic hot fluids

Abstract

Collision tectonics and the associated transformation of continental crust to high-pressure rocks (eclogites) are generally well-understood processes, but important contradictions remain between tectonothermal models and petrological–isotopic data obtained from such rocks. Here we use 40Ar–39Ar data coupled with a thermal model to constrain the time-integrated duration of an orogenic cycle (the burial and exhumation of a particular segment of the crust) to be less than 13 Myr. We also determine the total duration of associated metamorphic events to be 20 kyr, and of individual heat pulses experienced by the rocks to be as short as 10 years. Such short timescales are indicative of rapid tectonic processes associated with catastrophic deformation events (earthquakes). Such events triggered transient heat advection by hot fluid along deformation (shear) zones, which cut relatively cool and dry subducted crust. In contrast to current thermal models that assume thermal equilibrium and invoke high ambient temperatures in the thickened crust, our non-steady-state cold-crust model satisfactorily explains several otherwise contradictory geological observations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Geological map of Holsnøy island, northwest of Bergen, western Norway.
Figure 2: 40 Ar– 39 Ar release spectra for two step-heated amphibole aliquots of different grain size from the Alvfjellet lens (sample Alv6) on Holsnøy island.
Figure 3: 40 Ar– 39 Ar release spectra for step-heated phlogopite from the Alvfjellet (Alv6; Alv7) and Hundskjeften (Hunds14) lenses on Holsnøy island.
Figure 4: Cumulative probability diagram of integrated 40 Ar– 39 Ar ages for phlogopite from the Alvfjellet lens.
Figure 5: Apparent 40 Ar– 39 Ar age versus distance profiles across phlogopite from Alv6, Alv7 and Hunds14.
Figure 6: Relationship between time and temperature required for a 300-µm-diameter amphibole grain and a 1,500-µm-diameter phlogopite grain to incorporate 3.97 vol.% and 20 vol.% 40 Ar E , respectively.
Figure 7: Modelled pressure–temperature–time path for the Lindås nappe, Bergen arcs.

Similar content being viewed by others

References

  1. Austrheim, H. & Griffin, W. L. Shear deformation and eclogite formation within granulite facies anorthosites of the Bergen Arcs, western Norway. Chem. Geol. 50, 267–281 (1985)

    Article  ADS  CAS  Google Scholar 

  2. Koons, P. O., Rubie, D. C. & Frueh-Green, G. The effects of disequilibrium and deformation on the mineralogical evolution of quartz-diorite during metamorphism in the eclogite facies. J. Petrol. 28, 679–700 (1987)

    Article  ADS  CAS  Google Scholar 

  3. Leech, M. L. Arrested orogenic development: eclogitization, delamination and tectonic collapse. Earth Planet. Sci. Lett. 185, 149–159 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Bjørnerud, M., Austrheim, H. & Lund, M. G. Processes leading to eclogitization (densification) of subducted and tectonically buried crust. J. Geophys. Res. 107(B10), 2252–2269 (2002)

    Article  ADS  Google Scholar 

  5. Chopin, C. Very-high pressure metamorphism in the western Alps: implications for subduction of continental crust. Phil. Trans. R. Soc. Lond. A 321, 183–197 (1987)

    Article  ADS  CAS  Google Scholar 

  6. Andersen, T. B., Jamtveit, B., Dewey, J. F. & Swensson, E. Subduction and eduction of continental crust: major mechanisms during continent-continent collision and orogenic extensional collapse, a model based on the south Norwegian Caledonies. Terra Nova 3, 303–310 (1991)

    Article  ADS  Google Scholar 

  7. Dewey, J. F., Ryan, P. D. & Andersen, T. B. Orogenic uplift and collapse, crustal thickness, fabrics and metamorphic phase changes: the role of eclogites. Geol. Soc. Lond. Spec. Publ. 76, 325–343 (1993)

    Article  ADS  Google Scholar 

  8. Hynes, A., Arkani-Hamed, J. & Greiling, R. Subduction of continental margins and the uplift of high-pressure metamorphic rocks. Earth Planet. Sci. Lett. 140, 13–25 (1996)

    Article  ADS  CAS  Google Scholar 

  9. Bingen, B., Austrheim, H., Whitehouse, M. J. & Davis, W. J. Trace element signature and U-Pb geochronology of eclogite-facies zircon, Bergen Arcs, Caledonies of W Norway. Contrib. Mineral. Petrol. 147, 671–683 (2004)

    Article  ADS  CAS  Google Scholar 

  10. Jamtveit, B., Bucher-Nurminen, K. & Austrheim, H. Fluid controlled eclogitization of eclogites in deep crustal shear zones, Bergen Arcs, western Norway. Contrib. Mineral. Petrol. 104, 184–193 (1990)

    Article  ADS  CAS  Google Scholar 

  11. Boundy, T. M. & Fountain, D. M. Structural development and petrofabrics of eclogite facies shear zones, Bergen Arcs, western Norway: implications for deep crustal deformation processes. J. Metamorph. Geol. 10, 127–146 (1992)

    Article  ADS  CAS  Google Scholar 

  12. Perchuk, A. L. Eclogites of the Bergen Arcs Complex, Norway: petrology and mineral chronometry. Petrology 10, 99–118 (2002)

    Google Scholar 

  13. Kühn, A., Glodny, J., Iden, K. & Austrheim, H. Retention of Precambrian Rb/Sr phlogopite ages through Caledonian eclogite facies metamorphism, Bergen Arc complex, W-Norway. Lithos 51, 305–330 (2000)

    Article  ADS  Google Scholar 

  14. Bjørnerud, M. & Austrheim, H. Comment on “Evidence for shear-heating, Musgrave Block, central Australia” by A. Camacho, I. McDougald, R. Armstrong and J. Braun. J. Struct. Geol. 24, 1537–1538 (2002)

    Article  ADS  Google Scholar 

  15. Bingen, B., Davis, W. J. & Austrheim, H. Zircon U-Pb geochronology in the Bergen arc eclogites and their Proterozoic protoliths, and implications for the pre-Scandian evolution of the Caledonies in western Norway. Geol. Soc. Am. Bull. 113, 640–649 (2001)

    Article  ADS  CAS  Google Scholar 

  16. McDougall, I. & Harrison, T. M. Geochronology and Thermochronology by the 40Ar/39Ar Method (Oxford Univ. Press, New York, 1999)

    Google Scholar 

  17. Kelley, S. P., Arnaud, N. O. & Turner, S. P. High spatial resolution 40Ar/39Ar investigations using an ultra-violet laser probe extraction technique. Geochim. Cosmochim. Acta 58, 3519–3525 (1994)

    Article  ADS  CAS  Google Scholar 

  18. Mattey, D., Jackson, D. H., Harris, N. B. W. & Kelley, S. P. Isotopic constraints on fluid infiltration from an eclogite facies shear zone, Holsenøy, Norway. J. Metamorph. Geol. 12, 311–325 (1994)

    Article  ADS  CAS  Google Scholar 

  19. Boundy, T. M., Hall, C. M., Li, G., Essene, E. J. & Halliday, A. N. Fine-scale isotopic heterogeneities and fluids in the deep crust: a 40Ar/39Ar laser ablation and TEM study of muscovites from a granulite–eclogite transition zone. Earth Planet. Sci. Lett. 148, 223–242 (1997)

    Article  ADS  CAS  Google Scholar 

  20. Foland, K. A. Limited mobility of argon in a metamorphic terrain. Geochim. Cosmochim. Acta 43, 793–801 (1979)

    Article  ADS  CAS  Google Scholar 

  21. Camacho, A. An Isotopic Study of Deep-crustal Orogenic Processes: Musgrave Block, Central Australia. Ph.D thesis, Australian National Univ. (1998)

    Google Scholar 

  22. Erambert, M. & Austrheim, H. The effect of fluid and deformation on zoning and inclusion patterns in poly-metamorphic garnets. Contrib. Mineral. Petrol. 115, 204–214 (1993)

    Article  ADS  CAS  Google Scholar 

  23. Gee, D. G. A tectonic model for the central part of Scandinavian Caledonies. Am. J. Sci. A 275, 468–515 (1975)

    Google Scholar 

  24. Roberts, D. The Scandinavian Caledonies: event chronology, palaeographic settings and likely modern analogues. Tectonophysics 365, 283–299 (2003)

    Article  ADS  CAS  Google Scholar 

  25. Torsvik, T. H. et al. Continental break-up and collision in the Neoproterozoic and Palaeozoic—A tale of Baltica and Laurentia. Earth Sci. Rev. 40, 229–258 (1996)

    Article  ADS  Google Scholar 

  26. Dewey, J. F. & Strachan, R. A. Changing Silurian–Devonian relative plate motion in the Caledonides: sinistral transpression to sinistral transtension. J. Geol. Soc. Lond. 160, 219–229 (2003)

    Article  Google Scholar 

  27. Krabbendam, M. & Dewey, J. F. in Continental Transpression and Transtensional Tectonics (eds Holdsworth, R. E., Strachan, R. A. & Dewey, J. F.) 159–181 (Special Publications, Geological Society, London, 1998)

    Google Scholar 

  28. Braun, J. Pecube: a new finite-element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography. Comput. Geosci. 29, 787–794 (2003)

    Article  ADS  Google Scholar 

  29. Lee, J. K. W. Multipath diffusion in geochronology. Contrib. Mineral. Petrol. 120, 60–82 (1995)

    Article  ADS  CAS  Google Scholar 

  30. Glodny, J., Kühn, A. & Austrheim, H. Rb/Sr record of fluid-rock intercation in eclogites, Bergen Arcs, Norway. Geochim. Cosmochim. Acta 66(Suppl. 1), A280 (2002)

    Google Scholar 

  31. Seipold, U. Temperature dependence of thermal transport properties of crystalline rocks; a general law. Tectonophysics 291, 161–171 (1998)

    Article  ADS  Google Scholar 

  32. Seipold, U. & Huenges, E. Thermal properties of gneisses and amphibolites—high pressure and high temperature investigations of KTB-rock samples. Tectonophysics 291, 173–178 (1998)

    Article  ADS  CAS  Google Scholar 

  33. Jamtveit, B., Austrheim, H. & Malthe-Sørenssen, A. Accelerated hydration of the Earth's deep crust induced by stress perturbations. Nature 408, 75–78 (2000)

    Article  ADS  CAS  Google Scholar 

  34. Austrheim, H. & Boundy, T. M. Pseudotachylytes generated during seismic faulting and eclogitization of the deep crust. Science 265, 82–83 (1994)

    Article  ADS  CAS  Google Scholar 

  35. Wayte, G. J., Worden, R. H., Rubie, D. C. & Droop, G. T. R. A TEM study of disequilibrium plagioclase breakdown at high pressure: the role of infiltrating fluid. Contrib. Mineral. Petrol. 101, 426–437 (1989)

    Article  ADS  CAS  Google Scholar 

  36. Camacho, A. & McDougall, I. Intracratonic, strike-slip partitioned transpression and the formation and exhumation of eclogite facies rocks: An example from the Musgrave Block, central Australia. Tectonics 19, 978–996 (2000)

    Article  ADS  Google Scholar 

  37. Wain, A. L., Waters, D. J. & Austrheim, H. Metastability of granulites and processes of eclogitisation in the UHP region of western Norway. J. Metamorph. Geol. 19, 609–625 (2001)

    Article  ADS  Google Scholar 

  38. Camacho, A., McDougall, I., Armstrong, R. & Braun, J. Evidence for shear heating, Musgrave Block, central Australia. J. Struct. Geol. 23, 1007–1013 (2001)

    Article  ADS  Google Scholar 

  39. Phillipot, P. & Rumble, D. Fluid-rock interactions during high-pressure and ultrahigh-pressure metamorphism. Int. Geol. Rev. 42, 312–327 (2000)

    Article  Google Scholar 

  40. Austrheim, H., Erambert, M. & Boundy, T. M. Garnets recording deep crustal earthquakes. Earth Planet. Sci. Lett. 139, 223–238 (1996)

    Article  ADS  CAS  Google Scholar 

  41. Boundy, T. M., Mezger, K. & Essene, E. J. Temporal and tectonic evolution of the granulite-eclogite association from the Bergen Arcs, western Norway. Lithos 39, 159–178 (1997)

    Article  ADS  CAS  Google Scholar 

  42. Giletti, B. J. in Geochemical Transport and Kinetics (eds Hofmann, A. W., Giletti, B. J., Yoder, H. S. & Yund, R. A.) 107–115 (Carnegie Institute of Washington, 1974)

    Google Scholar 

  43. Harrison, T. M. Diffusion of 40Ar in hornblende. Contrib. Mineral. Petrol. 78, 324–331 (1981)

    Article  CAS  Google Scholar 

  44. Cocks, L. R. M. & Torsvik, T. H. Earth geography from 500 to 400 million years ago: a faunal and palaeomagnetic review. J. Geol. Soc. Lond. 159, 631–644 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

We especially thank H. Austrheim for all of his help in the field, hospitality, and discussions about the outcrop; M. Villeneuve for use of the ultraviolet-laser argon facility at the Geological Survey of Canada in Ottawa; and in particular S. Smith for technical assistance. In addition, M. Lund helped collect some samples and supplied Fig. 1, and S. Kelley and A. Perchuk provided comments on the manuscript. Comments by H. Austrheim, D. M. Carmichael, A. Clark, L. Godin, I. Parsons, C. Thompson, M. Villeneuve, S. M. Rigden and H. M. Klaschka on earlier versions of this paper are also acknowledged. This research was supported by the Natural Sciences and Engineering Research Council of Canada and the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James K. W. Lee.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Table S1

Representative electron microprobe analyses of amphiboles from sample Alv6 (XLS 20 kb)

Supplementary Table S2

40Ar-39Ar data for amphibole (XLS 31 kb)

Supplementary Table S3

Laser step heating 40Ar-39Ar analyses for phlogopite (XLS 41 kb)

Supplementary Table S4

Ultraviolet-laser 40Ar-39Ar analyses for phlogopite (XLS 25 kb)

Supplementary Table S5

40Ar-39Ar total fusion data for pyroxenes, garnet and olivine (XLS 24 kb)

Supplementary Table S6

Approximate 40Ar concentrations of various minerals separated from two peridotite lenses surrounded by eclogite (XLS 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camacho, A., Lee, J., Hensen, B. et al. Short-lived orogenic cycles and the eclogitization of cold crust by spasmodic hot fluids. Nature 435, 1191–1196 (2005). https://doi.org/10.1038/nature03643

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03643

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing