Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Correlation of structural elements and infectivity of the HET-s prion

Abstract

Prions are believed to be infectious, self-propagating polymers of otherwise soluble, host-encoded proteins1,2. This concept is now strongly supported by the recent findings that amyloid fibrils of recombinant prion proteins from yeast3,4,5, Podospora anserina6 and mammals7 can induce prion phenotypes in the corresponding hosts. However, the structural basis of prion infectivity remains largely elusive because acquisition of atomic resolution structural properties of amyloid fibrils represents a largely unsolved technical challenge. HET-s, the prion protein of P. anserina, contains a carboxy-terminal prion domain comprising residues 218–289. Amyloid fibrils of HET-s(218–289) are necessary and sufficient for the induction and propagation of prion infectivity6. Here, we have used fluorescence studies, quenched hydrogen exchange NMR and solid-state NMR to determine the sequence-specific positions of amyloid fibril secondary structure elements of HET-s(218–289). This approach revealed four β-strands constituted by two pseudo-repeat sequences, each forming a β-strand-turn-β-strand motif. By using a structure-based mutagenesis approach, we show that this conformation is the functional and infectious entity of the HET-s prion. These results correlate distinct structural elements with prion infectivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence-specific determination of regular secondary structure and its topology in HET-s(218-289) fibrils.
Figure 2: The proposed fold of the infectious conformation of HET-s(218–289) amyloid fibrils.
Figure 3: In vivo prion formation of HET-s proline and deletion mutants.

Similar content being viewed by others

References

  1. Alper, T., Cramp, W. A., Haig, D. A. & Clarke, M. C. Does the agent of scrapie replicate without nucleic acid? Nature 214, 764–766 (1967)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Prusiner, S. B. Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144 (1982)

    ADS  CAS  PubMed  Google Scholar 

  3. Sparrer, H. E., Santoso, A., Szoka, F. C. Jr & Weissman, J. S. Evidence for the prion hypothesis: induction of the yeast [PSI + ] factor by in vitro-converted Sup35 protein. Science 289, 595–599 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. King, C. Y. & Diaz-Avalos, R. Protein-only transmission of three yeast prion strains. Nature 428, 319–323 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Tanaka, M., Chien, P., Naber, N., Cooke, R. & Weissman, J. S. Conformational variations in an infectious protein determine prion strain differences. Nature 428, 323–328 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Maddelein, M. L., Dos Reis, S., Duvezin-Caubet, S., Coulary-Salin, B. & Saupe, S. J. Amyloid aggregates of the HET-s prion protein are infectious. Proc. Natl Acad. Sci. USA 99, 7402–7407 (2002)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Legname, G. et al. Synthetic mammalian prions. Science 305, 673–676 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Glass, N. L. & Kaneko, I. Fatal attraction: nonself recognition and heterokaryon incompatibility in filamentous fungi. Eukaryot. Cell 2, 1–8 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Saupe, S. J. Molecular genetics of heterokaryon incompatibility in filamentous ascomycetes. Microbiol. Mol. Biol. Rev. 64, 489–502 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Turcq, B., Deleu, C., Denayrolles, M. & Begueret, J. Two allelic genes responsible for vegetative incompatibility in the fungus Podospora anserina are not essential for cell viability. Mol. Gen. Genet. 228, 265–269 (1991)

    Article  CAS  PubMed  Google Scholar 

  11. Coustou, V., Deleu, C., Saupe, S. & Begueret, J. The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc. Natl Acad. Sci. USA 94, 9773–9778 (1997)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dos Reis, S. et al. The HET-s prion protein of the filamentous fungus Podospora anserina aggregates in vitro into amyloid-like fibrils. J. Biol. Chem. 277, 5703–5706 (2002)

    Article  CAS  PubMed  Google Scholar 

  13. Balguerie, A. et al. Domain organization and structure-function relationship of the HET-s prion protein of Podospora anserina. EMBO J. 22, 2071–2081 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Coustou-Linares, V., Maddelein, M. L., Begueret, J. & Saupe, S. J. In vivo aggregation of the HET-s prion protein of the fungus Podospora anserina. Mol. Microbiol. 42, 1325–1335 (2001)

    Article  CAS  PubMed  Google Scholar 

  15. Balguerie, A. et al. The sequences appended to the amyloid core region of the HET-s prion protein determine higher-order aggregate organization in vivo. J. Cell Sci. 117, 2599–2610 (2004)

    Article  CAS  PubMed  Google Scholar 

  16. Hoshino, M. et al. Mapping the core of the β2-microglobulin amyloid fibril by H/D exchange. Nature Struct. Biol. 9, 332–336 (2002)

    Article  CAS  PubMed  Google Scholar 

  17. Lührs, T. et al. The 3D structure of Alzheimer's Aβ(1–42) fibrils. Nature (submitted)

  18. Verel, R., Ernst, M. & Meier, B. H. Adiabatic dipolar recoupling in solid-state NMR: The DREAM scheme. J. Magn. Reson. 150, 81–99 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Siemer, A. B., Ritter, C., Ernst, M., Riek, R. & Meier, B. H. High-resolution solid-state NMR of the prion protein HET-s in its amyloid conformation. Angew. Chem. Int. Edn Engl. 44, 2441–2444 (2005)

    Article  CAS  Google Scholar 

  20. Wishart, D. S. & Sykes, B. D. The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J. Biomol. NMR 4, 171–180 (1994)

    Article  CAS  PubMed  Google Scholar 

  21. Javitch, J. A., Shi, L. & Liapakis, G. Use of the substituted cysteine accessibility method to study the structure and function of G protein-coupled receptors. Methods Enzymol. 343, 137–156 (2002)

    Article  PubMed  Google Scholar 

  22. Tycko, R. Progress towards a molecular-level structural understanding of amyloid fibrils. Curr. Opin. Struct. Biol. 14, 96–103 (2004)

    Article  CAS  PubMed  Google Scholar 

  23. Petkova, A. T. et al. Self-propagating, molecular-level polymorphism in Alzheimer's β-amyloid fibrils. Science 307, 262–265 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Laws, D. D. et al. Solid-state NMR studies of the secondary structure of a mutant prion protein fragment of 55 residues that induces neurodegeneration. Proc. Natl Acad. Sci. USA 98, 11686–11690 (2001)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yamaguchi, K. et al. Core and heterogeneity of β2-microglobulin amyloid fibrils as revealed by H/D exchange. J. Mol. Biol. 338, 559–571 (2004)

    Article  CAS  PubMed  Google Scholar 

  26. Harper, J. D. & Lansbury, P. T. Jr Models of amyloid seeding in Alzheimer's disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu. Rev. Biochem. 66, 385–407 (1997)

    Article  CAS  PubMed  Google Scholar 

  27. Grzesiek, S. et al. 1H, 13C, and 15N NMR backbone assignments and secondary structure of human interferon-γ. Biochemistry 31, 8180–8190 (1992)

    Article  CAS  PubMed  Google Scholar 

  28. Bracken, C., Palmer, A. G. III & Cavanagh, J. (H)N(COCA)NH and HN(COCA)NH experiments for 1H–15N backbone assignments in 13C/15N-labeled proteins. J. Biomol. NMR 9, 94–100 (1997)

    Article  CAS  PubMed  Google Scholar 

  29. Guntert, P., Dotsch, V., Wider, G. & Wuthrich, K. Processing of multidimensional NMR data with the new software Prosa. J. Biomol. NMR 2, 619–629 (1992)

    Article  Google Scholar 

  30. Samoson, A., Tuherm, T. & Past, J. Rotation sweep NMR. Chem. Phys. Lett. 365, 292–299 (2002)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

R.R. is a Pew scholar. This research was supported in part by grants from the National Institute of Health, the US Army, the ETH Zurich, the Swiss National Science Foundation, the CNRS and the French Ministry of Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Riek.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

Contains Supplementary Figures S1-S5 (additional solid and liquid state NMR data, sequence alignments and EM pictures), legends to accompany the figures and Supplementary Tables S1 and S2 giving details of the HET-s infectivity and function assays. (PDF 2848 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritter, C., Maddelein, ML., Siemer, A. et al. Correlation of structural elements and infectivity of the HET-s prion. Nature 435, 844–848 (2005). https://doi.org/10.1038/nature03793

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03793

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing