Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Geomagnetic dipole strength and reversal rate over the past two million years

Abstract

Independent records of relative magnetic palaeointensity from sediment cores in different areas of the world can be stacked together to extract the evolution of the geomagnetic dipole moment1,2 and thus provide information regarding the processes governing the geodynamo. So far, this procedure has been limited to the past 800,000 years (800 kyr; ref. 3), which does not include any geomagnetic reversals. Here we present a composite curve that shows the evolution of the dipole moment during the past two million years. This reconstruction is in good agreement with the absolute dipole moments derived from volcanic lavas, which were used for calibration. We show that, at least during this period, the time-averaged field was higher during periods without reversals but the amplitude of the short-term oscillations remained the same. As a consequence, few intervals of very low intensity, and thus fewer instabilities, are expected during periods with a strong average dipole moment, whereas more excursions and reversals are expected during periods of weak field intensity. We also observe that the axial dipole begins to decay 60–80 kyr before reversals, but rebuilds itself in the opposite direction in only a few thousand years.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Various stacks obtained for the period 0.6–2 Myr ago.
Figure 2: Composite Sint-2000 record depicting the evolution of the field intensity during the past 2 Myr.
Figure 3: Time-averaged dipole moment calculated within sliding windows of different sizes, as a function of the number of reversals contained within each window.
Figure 4: Field intensity variations across the five reversals occurring during the past 2 Myr.

Similar content being viewed by others

References

  1. Guyodo, Y. & Valet, J. P. Relative variations in geomagnetic intensity from sedimentary records: the past 200 thousand years. Earth Planet. Sci. Lett. 143, 23–26 (1996)

    Article  ADS  CAS  Google Scholar 

  2. Laj, C., Kissel, C., Mazaud, M., Channell, J. E. T. & Beer, J. North Atlantic paleointensity stack since 75 ka (NAPIS 75) and the duration of the Laschamp event. Phil. Trans. R. Soc. Lond. A 358, 1009–1025 (2000)

    Article  ADS  Google Scholar 

  3. Guyodo, Y. & Valet, J. P. Global changes in intensity of the Earth's magnetic field during the past 800 kyr. Nature 399, 249–252 (1999)

    Article  ADS  CAS  Google Scholar 

  4. Gee, J., Cande, S. C., Hildebrand, J. A., Donnelly, J. A. & Parker, R. L. Geomagnetic intensity variations over the past 780 kyr obtained from near-seafloor magnetic anomalies. Nature 408, 827–832 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Pouliquen, G., Gallet, Y., Dyment, J., Patriat, P. & Tamura, C. A geomagnetic record over the last 4 million years from deep-tow magnetic profiles across the Central Indian Ridge. J. Geophys. Res. 106, 10941–10960 (2001)

    Article  ADS  Google Scholar 

  6. Frank, M. A 200 kyr record of cosmogenic radionuclide production rate and geomagnetic field intensity from 10Be in globally stacked deep-sea sediments. Phil. Trans. R. Soc. Lond. A 358, 1089–1107 (2000)

    Article  ADS  CAS  Google Scholar 

  7. Baumgartner, S. et al. Geomagnetic modulation of the 36Cl flux in the Grip ice core, Greenland. Science 279, 1330–1332 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Valet, J.-P., Meynadier, L., Bassinot, F. C. & Garnier, F. Relative paleointensity across the last geomagnetic reversal from sediments of the Atlantic, Indian and Pacific oceans. Geophys. Res. Lett. 21, 485–488 (1994)

    Article  ADS  Google Scholar 

  9. Dinares-Turell, J., Sagnotti, L. & Roberts, A. P. Relative geomagnetic paleointensity from the Jaramillo subchron to the Matuyama/Brunhes boundary as recorded in a Mediterranean piston core. Earth Planet. Sci. Lett. 194, 327–341 (2002)

    Article  ADS  CAS  Google Scholar 

  10. Laj, C. & Kissel, C. Geomagnetic field intensity and reversals for the last 1.8 Ma from a central equatorial Pacific core. Geophys. Res. Lett. 23, 3393–3396 (1996)

    Article  ADS  Google Scholar 

  11. Channell, J. E. T. & Kleiven, H. F. Geomagnetic paleointensity and astrochronological ages for the Matuyama-Brunhes boundary and the boundaries of the Jaramillo subchron: paleomagnetic and oxygen isotope records from ODP site 983. Phil. Trans. R. Soc. Lond. A 358, 1027–1047 (2000)

    Article  ADS  CAS  Google Scholar 

  12. Guyodo, Y., Richter, C. & Valet, J. P. Paleointensity record from Pleistocene sediments off the California Margin. J. Geophys. Res. 104, 22953–22964 (1999)

    Article  ADS  Google Scholar 

  13. Guyodo, Y., Acton, G. D., Brachfeld, S. & Channell, J. E. T. A sedimentary paleomagnetic record of the Matuyama chron from the western Antarctic margin. Earth Planet. Sci. Lett. 191, 61–74 (2001)

    Article  ADS  CAS  Google Scholar 

  14. Hayashida, A., Verosub, K. L., Heider, F. & Leonhardt, R. Magnetostratigraphy and relative paleointensity of late Neogene sediments at ODP leg 167 site 1010 off Baja California. Geophys. J. Int. 139, 829–840 (1999)

    Article  ADS  Google Scholar 

  15. Horng, C. S., Roberts, A. P. & Liang, W.-T. Astronomically tuned record of relative geomagnetic paleointensity from the western Philippine sea. J. Geophys. Res. 108, 2059, doi:10.1029/2001JB001698 (2003)

    Article  ADS  Google Scholar 

  16. Kent, D. V. & Opdyke, N. D. Paleomagnetic field intensity recorded in a Brunhes epoch deep-sea sediment core. Nature 266, 156–159 (1977)

    Article  ADS  CAS  Google Scholar 

  17. Kok, Y. S. & Tauxe, L. A relative geomagnetic paleointensity stack from Ontong-Java plateau sediments for the Matuyama. J. Geophys. Res. 104, 25401–25413 (1999)

    Article  ADS  Google Scholar 

  18. Meynadier, L., Valet, J.-P., Bassinot, F. C., Shackleton, N. & Guyodo, Y. Asymmetrical saw-tooth pattern of the geomagnetic field intensity from equatorial sediments in the Pacific and the Indian oceans. Earth Planet. Sci. Lett. 126, 109–127 (1994)

    Article  ADS  Google Scholar 

  19. Sato, T., Kikuchi, H., Nakashizuka, M. & Okada, M. Quaternary geomagnetic field intensity: constant periodicity or variable period? Geophys. Res. Lett. 25, 2221–2224 (1998)

    Article  ADS  Google Scholar 

  20. Schneider, D. A., Kent, D. V. & Mello, G. A. A high-resolution marine sedimentary record of geomagnetic intensity during the Brunhes chron. Earth Planet. Sci. Lett. 111, 395–405 (1992)

    Article  ADS  Google Scholar 

  21. Valet, J.-P. & Meynadier, L. Geomagnetic field intensity and reversals during the past four million years. Nature 366, 234–238 (1993)

    Article  ADS  Google Scholar 

  22. Valet, J.-P. Time variations in geomagnetic intensity. Rev. Geophys. 41(1), 1004 (2003)

    Article  ADS  Google Scholar 

  23. Guyodo, Y. & Channell, J. E. T. Effects of variable sedimentation rates and age errors on the resolution of sedimentary paleointensity records. Geochem. Geophys. Geosyst. 10, doi:1029/2001GC000211 (2002)

  24. McMillan, D. G., Constable, C. G. & Parker, R. L. Assessing the dipolar signal in stacked paleointensity records using a statistical error model and geodynamo simulations. Physics Earth Planet. Inter. 145, 37–54 (2004)

    Article  ADS  Google Scholar 

  25. Guyodo, Y. & Valet, J. P. A comparison of relative paleointensity records of the Matuyama chron for the period 0.75–1.25 Ma. Phys. Earth. Planet. Inter. (in the press)

  26. Guyodo, Y., Gaillot, P. & Channell, J. E. T. Wavelet analysis of relative geomagnetic paleointensity at ODP Site 983. Earth Planet. Sci. Lett. 184, 109–123 (2000)

    Article  ADS  CAS  Google Scholar 

  27. Perrin, M. & Schnepp, E. IAGA paleointensity database: distribution and quality of the dataset. Phys. Earth Planet. Inter. 147(2–3), 255–267 (2004)

    Article  ADS  Google Scholar 

  28. Constable, C. G., Tauxe, L. & Parker, R. L. Analysis of 11 Myr of geomagnetic intensity variation. J. Geophys. Res. 103, 17735–17748 (1998)

    Article  ADS  Google Scholar 

  29. Quidelleur, X., Gillot, P.-Y., Carlut, J. & Courtillot, V. The age and duration of the Matuyama–Brunhes transition from new K–Ar data from La Palma (Canary Islands) and revisited 40Ar/39Ar ages. Earth Planet. Sci. Lett. 168, 233–242 (1999)

    Article  ADS  CAS  Google Scholar 

  30. Meynadier, L. & Valet, J.-P. Post-depositional realignment of magnetic grains and asymmetrical saw-toothed pattern of magnetization intensity. Earth Planet. Sci. Lett. 140, 123–132 (1996)

    Article  ADS  CAS  Google Scholar 

  31. Mazaud, A. Saw-tooth variation in magnetic intensity profiles and delayed acquisition of magnetization in deep sea cores. Earth Planet. Sci. Lett. 139, 379–386 (1996)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the INSU-CNRS programme ‘Dynamique et Evolution de la Terre Interne’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Valet.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valet, JP., Meynadier, L. & Guyodo, Y. Geomagnetic dipole strength and reversal rate over the past two million years. Nature 435, 802–805 (2005). https://doi.org/10.1038/nature03674

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03674

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing