Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of oxidized α-haemoglobin bound to AHSP reveals a protective mechanism for haem

Abstract

The synthesis of haemoglobin A (HbA) is exquisitely coordinated during erythrocyte development to prevent damaging effects from individual α- and β-subunits1,2. The α-haemoglobin-stabilizing protein (AHSP) binds α-haemoglobin (αHb), inhibits the ability of αHb to generate reactive oxygen species and prevents its precipitation on exposure to oxidant stress3,4,5. The structure of AHSP bound to ferrous αHb is thought to represent a transitional complex through which αHb is converted to a non-reactive, hexacoordinate ferric form5. Here we report the crystal structure of this ferric αHb–AHSP complex at 2.4 Å resolution. Our findings reveal a striking bis-histidyl configuration in which both the proximal and the distal histidines coordinate the haem iron atom. To attain this unusual conformation, segments of αHb undergo drastic structural rearrangements, including the repositioning of several α-helices. Moreover, conversion to the ferric bis-histidine configuration strongly and specifically inhibits redox chemistry catalysis and haem loss from αHb. The observed structural changes, which impair the chemical reactivity of haem iron, explain how AHSP stabilizes αHb and prevents its damaging effects in cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the oxidized αHb bound to AHSP.
Figure 2: AHSP-bound oxidized αHb undergoes structural rearrangements.
Figure 3: Protective effects of the bis-histidyl configuration for Fe  iii -αHb.
Figure 4: Mechanisms of AHSP-mediated stabilization of αHb.

Similar content being viewed by others

References

  1. Bunn, H. F. Subunit assembly of hemoglobin: an important determinant of hematologic phenotype. Blood 69, 1–6 (1987)

    CAS  PubMed  Google Scholar 

  2. Baglioni, C. Chromosomal and cytoplasmic regulation of haemoglobin synthesis. Bibl. Haematol. 29, 1056–1063 (1966)

    Google Scholar 

  3. Kihm, A. J. et al. An abundant erythroid protein that stabilizes free α-haemoglobin. Nature 417, 758–763 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Kong, Y. et al. Loss of α-hemoglobin-stabilizing protein impairs erythropoiesis and exacerbates β-thalassemia. J. Clin. Invest. 114, 1457–1466 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Feng, L. et al. Molecular mechanism of AHSP-mediated stabilization of α-hemoglobin. Cell 119, 629–640 (2004)

    Article  CAS  PubMed  Google Scholar 

  6. Scott, M. D. et al. Effect of excess alpha-hemoglobin chains on cellular and membrane oxidation in model beta-thalassemic erythrocytes. J. Clin. Invest. 91, 1706–1712 (1993)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nathan, D. G. & Gunn, R. B. Thalassemia: the consequences of unbalanced hemoglobin synthesis. Am. J. Med. 41, 815–830 (1966)

    Article  CAS  PubMed  Google Scholar 

  8. Rachmilewitz, E. A. & Schrier, S. L. in Disorders of Hemoglobin (eds Steinberg, M. H., Forget, B. G., Higgs, D. R. & Nagel, R. L.) 233–251 (Cambridge Univ. Press, Cambridge, 2001)

    Google Scholar 

  9. Gell, D., Kong, Y., Eaton, S. A., Weiss, M. J. & Mackay, J. P. Biophysical characterization of the α-globin binding protein α-hemoglobin stabilizing protein. J. Biol. Chem. 277, 40602–40609 (2002)

    Article  CAS  PubMed  Google Scholar 

  10. Santiveri, C. M. et al. NMR structure of the α-hemoglobin chaperone AHSP: Insights into conformational heterogeneity and binding. J. Biol. Chem. 279, 34963–34970 (2004)

    Article  CAS  PubMed  Google Scholar 

  11. Dickerson, R. E. & Geis, I. Hemoglobin: Structure, Function, Evolution and Pathology (Benjamin/Cummings, Menlo Park, 1983)

    Google Scholar 

  12. Nagababu, E. & Rifkind, J. M. Heme degradation by reactive oxygen species. Antioxid. Redox Signal. 6, 967–978 (2004)

    CAS  PubMed  Google Scholar 

  13. Rifkind, J. M., Ramasamy, S., Manoharan, P. T., Nagababu, E. & Mohanty, J. G. Redox reactions of hemoglobin. Antioxid. Redox. Signal. 6, 657–666 (2004)

    Article  CAS  PubMed  Google Scholar 

  14. Alayash, A. I., Ryan, B. A., Eich, R. F., Olson, J. S. & Cashon, R. E. Reactions of sperm whale myoglobin with hydrogen peroxide. Effects of distal pocket mutations on the formation and stability of the ferryl intermediate. J. Biol. Chem. 274, 2029–2037 (1999)

    Article  CAS  PubMed  Google Scholar 

  15. Nagababu, E. & Rifkind, J. M. Reaction of hydrogen peroxide with ferrylhemoglobin: superoxide production and heme degradation. Biochemistry 39, 12503–12511 (2000)

    Article  CAS  PubMed  Google Scholar 

  16. Reeder, B. J., Svistunenko, D. A., Sharpe, M. A. & Wilson, M. T. Characteristics and mechanism of formation of peroxide-induced heme to protein cross-linking in myoglobin. Biochemistry 41, 367–375 (2002)

    Article  CAS  PubMed  Google Scholar 

  17. Berzofsky, J. A., Peisach, J. & Horecker, B. L. Sulfheme proteins. IV. The stoichiometry of sulfur incorporation and the isolation of sulfhemin, the prosthetic group of sulfmyoglobin. J. Biol. Chem. 247, 3783–3791 (1972)

    CAS  PubMed  Google Scholar 

  18. Herold, S. & Rehmann, F. J. Kinetic and mechanistic studies of the reactions of nitrogen monoxide and nitrite with ferryl myoglobin. J. Biol. Inorg. Chem. 6, 543–555 (2001)

    Article  CAS  PubMed  Google Scholar 

  19. Berzofsky, J. A., Peisach, J. & Blumberg, W. E. Sulfheme proteins. I. Optical and magnetic properties of sulfmyoglobin and its derivatives. J. Biol. Chem. 246, 3367–3377 (1971)

    CAS  PubMed  Google Scholar 

  20. Arredondo-Peter, R. et al. Rice hemoglobins. Gene cloning, analysis, and O2-binding kinetics of a recombinant protein synthesized in Escherichia coli . Plant Physiol. 115, 1259–1266 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Perazzolli, M. et al. Arabidopsis nonsymbiotic hemoglobin AHb1 modulates nitric oxide bioactivity. Plant Cell 16, 2785–2794 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hankeln, T. et al. Characterization of Drosophila hemoglobin. Evidence for hemoglobin-mediated respiration in insects. J. Biol. Chem. 277, 29012–29017 (2002)

    Article  CAS  PubMed  Google Scholar 

  23. Burmester, T., Weich, B., Reinhardt, S. & Hankeln, T. A vertebrate globin expressed in the brain. Nature 407, 520–523 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Sugimoto, H. et al. Structural basis of human cytoglobin for ligand binding. J. Mol. Biol. 339, 873–885 (2004)

    Article  CAS  PubMed  Google Scholar 

  25. Svistunenko, D. A. et al. The pH dependence of naturally occurring low-spin forms of methaemoglobin and metmyoglobin: an EPR study. Biochem. J. 351, 595–605 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  PubMed  Google Scholar 

  27. Terwilliger, T. C. & Berendzen, J. Correlated phasing of multiple isomorphous replacement data. Acta Crystallogr. D 52, 749–757 (1996)

    Article  CAS  PubMed  Google Scholar 

  28. Brunger, A. T. et al. Crystallography and NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  CAS  PubMed  Google Scholar 

  29. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991)

    Article  CAS  PubMed  Google Scholar 

  30. Kraulis, P. J. Molscript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991)

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Becker and A. Sexana at BNL NSLS beamlines for help. This work was supported by grants from the National Institutes of Health (to Y.S. and M.J.W.), the American Heart Association (to A.J.G.) and the Cooley's Anemia Foundation (S.Z.).Author Contributions L.F., S.Z. and L.G. contributed equally to this work. L.F. crystallized the oxidized α-haemoglobin bound to AHSP. L.F. and L.G. solved the structure. S.Z. and L.F. performed the biochemical experiments in Fig. 3. Y.S. and A.J.G. wrote the paper. All authors discussed the results and commented on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew J. Gow or Yigong Shi.

Ethics declarations

Competing interests

The atomic coordinates of the oxidized αHb–AHSP complex have been deposited in the Protein Data Bank with the accession number 1Z8U. Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figure S1

Structural changes in the haeme-binding region of αHb (JPG 134 kb)

Supplementary Figure S2

Quantification of the change in haeme species, after the addition of hydrogen peroxide to the ferrous αHb complex (panel a) and the ferric Hb complex (panel b). (JPG 45 kb)

Supplementary Table S1

Summary of crystallographic analysis (DOC 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, L., Zhou, S., Gu, L. et al. Structure of oxidized α-haemoglobin bound to AHSP reveals a protective mechanism for haem. Nature 435, 697–701 (2005). https://doi.org/10.1038/nature03609

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03609

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing