Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Retinoic acid signalling links left–right asymmetric patterning and bilaterally symmetric somitogenesis in the zebrafish embryo

Abstract

During embryogenesis, cells are spatially patterned as a result of highly coordinated and stereotyped morphogenetic events. In the vertebrate embryo, information on laterality is conveyed to the node, and subsequently to the lateral plate mesoderm, by a complex cascade of epigenetic and genetic events, eventually leading to a left–right asymmetric body plan. At the same time, the paraxial mesoderm is patterned along the anterior–posterior axis in metameric units, or somites, in a bilaterally symmetric fashion. Here we characterize a cascade of laterality information in the zebrafish embryo and show that blocking the early steps of this cascade (before it reaches the lateral plate mesoderm) results in random left–right asymmetric somitogenesis. We also uncover a mechanism mediated by retinoic acid signalling that is crucial in buffering the influence of the flow of laterality information on the left–right progression of somite formation, and thus in ensuring bilaterally symmetric somitogenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cascade of LR asymmetric information in the zebrafish.
Figure 2: LR asymmetric somitogenesis in zebrafish embryos.
Figure 3: RA signalling coordinates LR somitogenesis in zebrafish embryos.
Figure 4: Desynchronization of the molecular clock in raldh2 morphants.
Figure 5: RA signalling counteracts the LR information flow during zebrafish somitogenesis.
Figure 6: Crosstalk between LR and AP axes.

Similar content being viewed by others

References

  1. Levin, M. Left–right asymmetry in embryonic development: a comprehensive review. Mech. Dev. 122, 3–25 (2005)

    Article  CAS  PubMed  Google Scholar 

  2. Raya, A. & Izpisúa Belmonte, J. C. Sequential transfer of left–right information during vertebrate embryo development. Curr. Opin. Genet. Dev. 14, 575–581 (2004)

    Article  CAS  PubMed  Google Scholar 

  3. Bisgrove, B. W., Morelli, S. H. & Yost, H. J. Genetics of human laterality disorders: Insights from vertebrate model systems. Annu. Rev. Genomics Hum. Genet. 4, 1–32 (2003)

    Article  CAS  PubMed  Google Scholar 

  4. Hamada, H., Meno, C., Watanabe, D. & Saijoh, Y. Establishment of vertebrate left–right asymmetry. Nature Rev. Genet. 3, 103–113 (2002)

    Article  CAS  PubMed  Google Scholar 

  5. Capdevila, J., Vogan, K. J., Tabin, C. J. & Izpisúa Belmonte, J. C. Mechanisms of left–right determination in vertebrates. Cell 101, 9–21 (2000)

    Article  CAS  PubMed  Google Scholar 

  6. Dubrulle, J. & Pourquie, O. Coupling segmentation to axis formation. Development 131, 5783–5793 (2004)

    Article  CAS  PubMed  Google Scholar 

  7. Aulehla, A. & Herrmann, B. G. Segmentation in vertebrates: clock and gradient finally joined. Genes Dev. 18, 2060–2067 (2004)

    Article  CAS  PubMed  Google Scholar 

  8. Weinmaster, G. & Kintner, C. Modulation of Notch signaling during somitogenesis. Annu. Rev. Cell Dev. Biol. 19, 367–395 (2003)

    Article  CAS  PubMed  Google Scholar 

  9. Saga, Y. & Takeda, H. The making of the somite: molecular events in vertebrate segmentation. Nature Rev. Genet. 2, 835–845 (2001)

    Article  CAS  PubMed  Google Scholar 

  10. Zakany, J., Kmita, M., Alarcon, P., de la Pompa, J. L. & Duboule, D. Localized and transient transcription of Hox genes suggests a link between patterning and the segmentation clock. Cell 106, 207–217 (2001)

    Article  CAS  PubMed  Google Scholar 

  11. Westerfield, M. The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio) (Univ. of Oregon Press, Eugene, 2000)

    Google Scholar 

  12. Campione, M. et al. The homeobox gene Pitx2: mediator of asymmetric left-right signaling in vertebrate heart and gut looping. Development 126, 1225–1234 (1999)

    CAS  PubMed  Google Scholar 

  13. Tsukui, T. et al. Multiple left-right asymmetry defects in Shh-/- mutant mice unveil a convergence of the Shh and retinoic acid pathways in the control of Lefty-1. Proc. Natl Acad. Sci. USA 96, 11376–11381 (1999)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Long, S., Ahmad, N. & Rebagliati, M. The zebrafish nodal-related gene southpaw is required for visceral and diencephalic left-right asymmetry. Development 130, 2303–2316 (2003)

    Article  CAS  PubMed  Google Scholar 

  15. Kane, D. A. & Kimmel, C. B. The zebrafish midblastula transition. Development 119, 447–456 (1993)

    CAS  PubMed  Google Scholar 

  16. Levin, M., Thorlin, T., Robinson, K., Nogi, T. & Mercola, M. Asymmetries in H+/K+-ATPase and cell membrane potentials comprise a very early step in left-right patterning. Cell 111, 77–89 (2002)

    Article  CAS  PubMed  Google Scholar 

  17. Raya, A. et al. Notch activity acts as a sensor for extracellular calcium during vertebrate left–right determination. Nature 427, 121–128 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Krebs, L. T. et al. Notch signaling regulates left–right asymmetry determination by inducing Nodal expression. Genes Dev. 17, 1207–1212 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Raya, A. et al. Notch activity induces Nodal expression and mediates the establishment of left–right asymmetry in vertebrate embryos. Genes Dev. 17, 1213–1218 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dovey, H. F. et al. Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. J. Neurochem. 76, 173–181 (2001)

    Article  CAS  PubMed  Google Scholar 

  21. Geling, A., Steiner, H., Willem, M., Bally-Cuif, L. & Haass, C. A gamma-secretase inhibitor blocks Notch signaling in vivo and causes a severe neurogenic phenotype in zebrafish. EMBO Rep. 3, 688–694 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nonaka, S. et al. Randomization of left–right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95, 829–837 (1998)

    Article  CAS  PubMed  Google Scholar 

  23. Essner, J. J. et al. Conserved function for embryonic nodal cilia. Nature 418, 37–38 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Levin, M. Motor protein control of ion flux is an early step in embryonic left–right asymmetry. BioEssays 25, 1002–1010 (2003)

    Article  CAS  PubMed  Google Scholar 

  25. Okada, Y. et al. Abnormal nodal flow precedes situs inversus in iv and inv mice. Mol. Cell 4, 459–468 (1999)

    Article  CAS  PubMed  Google Scholar 

  26. Amack, J. D. & Yost, H. J. The T box transcription factor no tail in ciliated cells controls zebrafish left-right asymmetry. Curr. Biol. 14, 685–690 (2004)

    Article  CAS  PubMed  Google Scholar 

  27. Stickney, H. L., Barresi, M. J. & Devoto, S. H. Somite development in zebrafish. Dev. Dyn. 219, 287–303 (2000)

    Article  CAS  PubMed  Google Scholar 

  28. Giudicelli, F. & Lewis, J. The vertebrate segmentation clock. Curr. Opin. Genet. Dev. 14, 407–414 (2004)

    Article  CAS  PubMed  Google Scholar 

  29. Holley, S. A., Geisler, R. & Nusslein-Volhard, C. Control of her1 expression during zebrafish somitogenesis by a Delta-dependent oscillator and an independent wave-front activity. Genes Dev. 14, 1678–1690 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Jiang, Y. J. et al. Notch signalling and the synchronization of the somite segmentation clock. Nature 408, 475–479 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Holley, S. A., Julich, D., Rauch, G. J., Geisler, R. & Nusslein-Volhard, C. her1 and the notch pathway function within the oscillator mechanism that regulates zebrafish somitogenesis. Development 129, 1175–1183 (2002)

    CAS  PubMed  Google Scholar 

  32. Itoh, M. et al. Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta. Dev. Cell 4, 67–82 (2003)

    Article  CAS  PubMed  Google Scholar 

  33. Yan, Y. T. et al. Conserved requirement for EGF-CFC genes in vertebrate left–right axis formation. Genes Dev. 13, 2527–2537 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bessho, Y. & Kageyama, R. Oscillations, clocks and segmentation. Curr. Opin. Genet. Dev. 13, 379–384 (2003)

    Article  CAS  PubMed  Google Scholar 

  35. Niederreither, K., Subbarayan, V., Dolle, P. & Chambon, P. Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nature Genet. 21, 444–448 (1999)

    Article  CAS  PubMed  Google Scholar 

  36. Begemann, G., Schilling, T. F., Rauch, G. J., Geisler, R. & Ingham, P. W. The zebrafish neckless mutation reveals a requirement for raldh2 in mesodermal signals that pattern the hindbrain. Development 128, 3081–3094 (2001)

    CAS  PubMed  Google Scholar 

  37. Zile, M. H. et al. Retinoid signaling is required to complete the vertebrate cardiac left/right asymmetry pathway. Dev. Biol. 223, 323–338 (2000)

    Article  CAS  PubMed  Google Scholar 

  38. Niederreither, K. et al. Embryonic retinoic acid synthesis is essential for heart morphogenesis in the mouse. Development 128, 1019–1031 (2001)

    CAS  PubMed  Google Scholar 

  39. Rida, P. C., Le Minh, N. & Jiang, Y. J. A Notch feeling of somite segmentation and beyond. Dev. Biol. 265, 2–22 (2004)

    Article  CAS  PubMed  Google Scholar 

  40. Pourquie, O. The segmentation clock: converting embryonic time into spatial pattern. Science 301, 328–330 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Sawada, A. et al. Zebrafish Mesp family genes, mesp-a and mesp-b are segmentally expressed in the presomitic mesoderm, and Mesp-b confers the anterior identity to the developing somites. Development 127, 1691–1702 (2000)

    CAS  PubMed  Google Scholar 

  42. Henry, C. A. et al. Two linked hairy/Enhancer of split-related zebrafish genes, her1 and her7, function together to refine alternating somite boundaries. Development 129, 3693–3704 (2002)

    CAS  PubMed  Google Scholar 

  43. Oates, A. C. & Ho, R. K. Hairy/E(spl)-related (Her) genes are central components of the segmentation oscillator and display redundancy with the Delta/Notch signaling pathway in the formation of anterior segmental boundaries in the zebrafish. Development 129, 2929–2946 (2002)

    CAS  PubMed  Google Scholar 

  44. Pourquie, O. & Tam, P. P. A nomenclature for prospective somites and phases of cyclic gene expression in the presomitic mesoderm. Dev. Cell 1, 619–620 (2001)

    Article  CAS  PubMed  Google Scholar 

  45. Saga, Y., Hata, N., Koseki, H. & Taketo, M. M. Mesp2: a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation. Genes Dev. 11, 1827–1839 (1997)

    Article  CAS  PubMed  Google Scholar 

  46. Moreno, T. A. & Kintner, C. Regulation of segmental patterning by retinoic acid signaling during Xenopus somitogenesis. Dev. Cell 6, 205–218 (2004)

    Article  CAS  PubMed  Google Scholar 

  47. Reifers, F. et al. Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis. Development 125, 2381–2395 (1998)

    CAS  PubMed  Google Scholar 

  48. Vermot, J. & Pourquié, O. Retinoic acid coordinates somitogenesis and left–right patterning in vertebrate embryos. Nature doi:10.1038/nature03488 (this issue)

  49. Boettger, T., Wittler, L. & Kessel, M. FGF8 functions in the specification of the right body side of the chick. Curr. Biol. 9, 277–280 (1999)

    Article  CAS  PubMed  Google Scholar 

  50. Rodriguez-Esteban, C., Capdevila, J., Kawakami, Y. & Izpisua Belmonte, J. C. Wnt signaling and PKA control Nodal expression and left-right determination in the chick embryo. Development 128, 3189–3195 (2001)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Tsukui, H. Takeda and A. Smolka for sharing reagents; N. Hirokawa and P. Dollé for sharing results before publication; C. Kintner for helpful suggestions; all members of the laboratory for discussions; I. Dubova for help with fish procedures; C. Callol, T. Chapman, H. Kawakami and M. Sugii for technical assistance; and M.-F. Schwarz for help in the preparation of this manuscript. A.R. and C.R.-E. are partly supported by postdoctoral fellowships from Fundación Inbiomed, Spain. This study was funded by the NIH, the Human Frontier Science Program, and the G. Harold and Leila Y. Mathers Charitable Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Izpisúa Belmonte.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figures

Contains three Supplementary Figures, S1-S3 and additional references. Supplementary Figure S1 details the H+/K+-ATPase α immunoreactivity in zebrafish embryos. Supplementary Figure S2 shows the alterations in somitogenesis after inhibition of FGF and/or Wnt signalling. Supplementary Figure S3 details the expression of RA receptors in the zebrafish embryo. (DOC 297 kb)

Supplementary Table S1

Left-right bias of asymmetric somitogenesis. (DOC 51 kb)

Supplementary Methods

This contains additional details of the methods used in our study. (DOC 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawakami, Y., Raya, Á., Raya, R. et al. Retinoic acid signalling links left–right asymmetric patterning and bilaterally symmetric somitogenesis in the zebrafish embryo. Nature 435, 165–171 (2005). https://doi.org/10.1038/nature03512

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03512

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing