Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera

Abstract

Myeloproliferative disorders are clonal haematopoietic stem cell malignancies characterized by independency or hypersensitivity of haematopoietic progenitors to numerous cytokines1,2. The molecular basis of most myeloproliferative disorders is unknown. On the basis of the model of chronic myeloid leukaemia, it is expected that a constitutive tyrosine kinase activity could be at the origin of these diseases. Polycythaemia vera is an acquired myeloproliferative disorder, characterized by the presence of polycythaemia diversely associated with thrombocytosis, leukocytosis and splenomegaly3. Polycythaemia vera progenitors are hypersensitive to erythropoietin and other cytokines4,5. Here, we describe a clonal and recurrent mutation in the JH2 pseudo-kinase domain of the Janus kinase 2 (JAK2) gene in most (> 80%) polycythaemia vera patients. The mutation, a valine-to-phenylalanine substitution at amino acid position 617, leads to constitutive tyrosine phosphorylation activity that promotes cytokine hypersensitivity and induces erythrocytosis in a mouse model. As this mutation is also found in other myeloproliferative disorders, this unique mutation will permit a new molecular classification of these disorders and novel therapeutical approaches.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Erythropoietin-independent growth in polycythaemia vera cells is dependent on JAK2.
Figure 2: An acquired activating mutation in the 12th exon of JAK2.
Figure 3: Mutated JAK2 induces constitutive signalling leading to growth factor independence.
Figure 4: Erythrocytosis induced in recipient mice after transplantation with bone marrow cells transduced with mutated JAK2.

References

  1. Spivak, J. L. The chronic myeloproliferative disorders: clonality and clinical heterogeneity. Semin. Hematol. 41 (2 suppl. 3), 1–5 (2004)

    Article  CAS  Google Scholar 

  2. Prchal, J. T. Polycythemia vera and other primary polycythemias. Curr. Opin. Hematol. 12, 112–116 (2005)

    Article  Google Scholar 

  3. Spivak, J. L. Polycythemia vera: myths, mechanisms, and management. Blood 100, 4272–4290 (2002)

    Article  CAS  Google Scholar 

  4. Prchal, J. F. & Axelrad, A. A. Bone-marrow responses in polycythemia vera. N. Engl. J. Med. 290, 1382 (1974)

    CAS  PubMed  Google Scholar 

  5. Casadevall, N. et al. Erythroid progenitors in polycythemia vera. Demonstration of their hypersensitivity to erythropoietin using serum-free cultures. Blood 59, 447–451 (1982)

    CAS  PubMed  Google Scholar 

  6. Ugo, V. et al. Multiple signaling pathways are involved in erythropoietin-independent differentiation of erythroid progenitors in polycythemia vera. Exp. Hematol. 32, 179–187 (2004)

    Article  CAS  Google Scholar 

  7. Witthuhn, B. A. et al. JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell 74, 227–236 (1993)

    Article  CAS  Google Scholar 

  8. Bernabei, P. et al. Interferon-gamma receptor 2 expression as the deciding factor in human T, B, and myeloid cell proliferation or death. J. Leukoc. Biol. 70, 950–960 (2001)

    CAS  PubMed  Google Scholar 

  9. Kralovics, R., Guan, Y. & Prchal, J. T. Acquired uniparental disomy of chromosome 9p is a frequent stem cell defect in polycythemia vera. Exp. Hematol. 30, 229–236 (2002)

    Article  CAS  Google Scholar 

  10. Najfeld, V., Montella, L., Scalise, A. & Fruchtman, S. Exploring polycythaemia vera with fluorescence in situ hybridization: additional cryptic 9p is the most frequent abnormality detected. Br. J. Haematol. 119, 558–566 (2002)

    Article  Google Scholar 

  11. Kralovics, R., Stockton, D. W. & Prchal, J. T. Clonal hematopoiesis in familial polycythemia vera suggests the involvement of multiple mutational events in the early pathogenesis of the disease. Blood 102, 3793–3796 (2003)

    Article  CAS  Google Scholar 

  12. Saharinen, P., Takaluoma, K. & Silvennoinen, O. Regulation of the Jak2 tyrosine kinase by its pseudokinase domain. Mol. Cell. Biol. 20, 3387–3395 (2000)

    Article  CAS  Google Scholar 

  13. Saharinen, P., Vihinen, M. & Silvennoinen, O. Autoinhibition of Jak2 tyrosine kinase is dependent on specific regions in its pseudokinase domain. Mol. Biol. Cell 14, 1448–1459 (2003)

    Article  CAS  Google Scholar 

  14. Lindauer, K., Loerting, T., Liedl, K. R. & Kroemer, R. T. Prediction of the structure of human Janus kinase 2 (JAK2) comprising the two carboxy-terminal domains reveals a mechanism for autoregulation. Protein Eng. 14, 27–37 (2001)

    Article  CAS  Google Scholar 

  15. Argetsinger, L. S. et al. Autophosphorylation of JAK2 on tyrosines 221 and 570 regulates its activity. Mol. Cell. Biol. 24, 4955–4967 (2004)

    Article  CAS  Google Scholar 

  16. Feener, E. P., Rosario, F., Dunn, S. L., Stancheva, Z. & Myers, M. G. J. Tyrosine phosphorylation of Jak2 in the JH2 domain inhibits cytokine signaling. Mol. Cell. Biol. 24, 4968–4978 (2004)

    Article  CAS  Google Scholar 

  17. Luo, H. et al. Mutation in the Jak kinase JH2 domain hyperactivates Drosophila and mammalian Jak-Stat pathways. Mol. Cell. Biol. 17, 1562–1571 (1997)

    Article  CAS  Google Scholar 

  18. Kohlhuber, F. et al. A JAK1/JAK2 chimera can sustain alpha and gamma interferon responses. Mol. Cell. Biol. 17, 695–706 (1997)

    Article  CAS  Google Scholar 

  19. Lacronique, V. et al. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 278, 1309–1312 (1997)

    Article  ADS  CAS  Google Scholar 

  20. Huang, L. J., Constantinescu, S. N. & Lodish, H. F. The N-terminal domain of Janus kinase 2 is required for Golgi processing and cell surface expression of erythropoietin receptor. Mol. Cell 8, 1327–1338 (2001)

    Article  CAS  Google Scholar 

  21. Zhao, S. et al. JAK2, complemented by a second signal from c-kit or flt-3, triggers extensive self-renewal of primary multipotential hemopoietic cells. EMBO J. 21, 2159–2167 (2002)

    Article  CAS  Google Scholar 

  22. Pearson, T. C. & Messinezy, M. The diagnostic criteria of polycythaemia rubra vera. Leuk. Lymphoma 22 (suppl. 1), 87–93 (1996)

    PubMed  Google Scholar 

  23. Cools, J. et al. Genomic organization of human JAK2 and mutation analysis of its JH2-domain in leukemia. Cytogenet. Cell Genet. 85, 260–266 (1999)

    Article  CAS  Google Scholar 

  24. Le Coniat, M., Romana, S. P. & Berger, R. Partial chromosome 21 amplification in a child with acute lymphoblastic leukemia. Genes Chromosom. Cancer 14, 204–209 (1995)

    Article  CAS  Google Scholar 

  25. Dumoutier, L., Van Roost, E., Colau, D. & Renauld, J. C. Human interleukin-10-related T cell-derived inducible factor: molecular cloning and functional characterization as an hepatocyte-stimulating factor. Proc. Natl Acad. Sci. USA 97, 10144–10149 (2000)

    Article  ADS  CAS  Google Scholar 

  26. Chagraoui, H. et al. Stimulation of osteoprotegerin production is responsible for osteosclerosis in mice overexpressing TPO. Blood 101, 2983–2989 (2003)

    Article  CAS  Google Scholar 

  27. Dorsch, M. et al. Ectopic expression of delta4 impairs hematopoietic developement and leads to lymphoproliferative disease. Blood 100, 2046–2055 (2002)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to M.-H. Courtier, E. Leclerc and A. Tonon for technical assistance, P. Marynen and J. Cools for providing the human JAK2 cDNA, and J. Feunteun, F. Wendling and O. Bernard for scientific discussions. We thank I. Teyssandier and C. Marzac for their help in collecting polycythaemia vera samples, and J.-C. Brouet, S. Cheze, J.-J. Kiladjian, F. Lellouche, M. Leporrier, M. Macro, P. Morel, O. Reman, L. Roy, A.-L. Taksin, B. Varet and J.-P. Vilque for their help in collecting samples and clinical data. We are also grateful to the patients for their agreement in participating in this study. This work was supported by grants from La Ligue Nationale contre le Cancer (équipe labellisée 2003), la Fédération belge contre le cancer and the FNRS, Belgium. C.J. was supported by a fellowship from the Fondation pour la Recherche Médicale. J.S. was a recipient of a Marie Curie fellowship and of a Daimler-Benz PhD fellowship. S.N.C. is a Research Associate of the FNRS. W.V. is supported by an interface contract between INSERM and IGR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Vainchenker.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Method S1

5'-3' sequences of PCR and sequencing JAK2 primers. This shows all the primer sequences used for DNA amplification and sequencing. (DOC 49 kb)

Supplementary Method S2

Details of the technique of dual luciferase assays are given. (DOC 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

James, C., Ugo, V., Le Couédic, JP. et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434, 1144–1148 (2005). https://doi.org/10.1038/nature03546

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03546

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing