Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An olivine-free mantle source of Hawaiian shield basalts

Abstract

More than 50 per cent of the Earth's upper mantle consists of olivine and it is generally thought that mantle-derived melts are generated in equilibrium with this mineral. Here, however, we show that the unusually high nickel and silicon contents of most parental Hawaiian magmas are inconsistent with a deep olivine-bearing source, because this mineral together with pyroxene buffers both nickel and silicon at lower levels. This can be resolved if the olivine of the mantle peridotite is consumed by reaction with melts derived from recycled oceanic crust, to form a secondary pyroxenitic source. Our modelling shows that more than half of Hawaiian magmas formed during the past 1 Myr came from this source. In addition, we estimate that the proportion of recycled (oceanic) crust varies from 30 per cent near the plume centre to insignificant levels at the plume edge. These results are also consistent with volcano volumes, magma volume flux and seismological observations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Compositions of olivines from mantle-derived rocks.
Figure 2: Parental melt and lava compositions, showing that Hawaiian shield parental melts are higher in Ni and Si than permitted in equilibrium with an olivine-bearing source, and that conventional models cannot explain this feature.
Figure 3: Model diagram of the Hawaiian mantle plume.
Figure 4: Hawaiian parental melts and lavas as mixtures of melts from two contrasting lithologies, olivine-free (reaction) pyroxenite and common peridotite.
Figure 5: Schematic map of present position of the Hawaiian mantle plume, modified from ref. 50.

References

  1. McDonough, W. F. & Sun, S. S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995)

    Article  ADS  CAS  Google Scholar 

  2. Eggins, S. M. Petrogenesis of Hawaiian tholeiites. 1. Phase-equilibria constraints. Contrib. Mineral. Petrol. 110, 387–397 (1992)

    Article  ADS  CAS  Google Scholar 

  3. Sobolev, A. V. & Nikogosian, I. K. Petrology of long-lived mantle plume magmatism: Hawaii (Pacific) and Reunion Island (Indian Ocean). Petrology 2, 111–144 (1994)

    Google Scholar 

  4. Hauri, E. H. Major element variability in the Hawaiian mantle plume. Nature 382, 415–419 (1996)

    Article  ADS  CAS  Google Scholar 

  5. Herzberg, C. & Zhang, J. Z. Melting experiments on anhydrous peridotite KLB. 1. Compositions of magmas in the upper mantle and transition zone. J. Geophys. Res. Solid Earth 101, 8271–8295 (1996)

    Article  CAS  Google Scholar 

  6. Walter, M. J. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J. Petrol. 39, 29–60 (1998)

    Article  ADS  CAS  Google Scholar 

  7. Wagner, T. P. & Grove, T. L. Melt/harzburgite reaction in the petrogenesis of tholeiitic magma from Kilauea volcano, Hawaii. Contrib. Mineral. Petrol. 131, 1–12 (1998)

    Article  ADS  CAS  Google Scholar 

  8. Herzberg, C. & O'Hara, M. J. Plume-associated ultramafic magmas of phanerozoic age. J. Petrol. 43, 1857–1883 (2002)

    Article  ADS  CAS  Google Scholar 

  9. Takahashi, E. & Nakajima, K. in Hawaiian Volcanoes: Deep Underwater Perspectives (eds Takahashi, E., Lipman, P. W., Garcia, O. M., Naka, J. & Aramaki, S.) 403–418 (Geophys. Monogr. 128, AGU, Washington DC, 2002)

    Google Scholar 

  10. Hirschmann, M. M., Kogiso, T., Baker, M. B. & Stolper, E. M. Alkalic magmas generated by partial melting of garnet pyroxenite. Geology 31, 481–484 (2003)

    Article  ADS  CAS  Google Scholar 

  11. Beattie, P., Ford, C. & Russell, D. Partition coefficients for olivine-melt and ortho-pyroxene-melt systems. Contrib. Mineral. Petrol. 109, 212–224 (1991)

    Article  ADS  CAS  Google Scholar 

  12. Li, C., Ripley, E. M. & Mathez, E. A. The effect of S on the partitioning of Ni between olivine and silicate melt in MORB. Chem. Geol. 201, 295–306 (2003)

    Article  ADS  CAS  Google Scholar 

  13. Mavrogenes, J. A. & O'Neill, H. S. C. The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas. Geochim. Cosmochim. Acta 63, 1173–1180 (1999)

    Article  ADS  CAS  Google Scholar 

  14. Moore, J. G. & Clague, D. Volcano growth and evolution of island of Hawaii. Geol. Soc. Am. Bull. 104, 1471–1484 (1992)

    Article  ADS  Google Scholar 

  15. Sobolev, A. V., Hofmann, A. W. & Nikogosian, I. K. Recycled oceanic crust observed in ‘ghost plagioclase’ within the source of Mauna Loa lavas. Nature 404, 986–990 (2000)

    Article  ADS  CAS  Google Scholar 

  16. Lassiter, J. C. & Hauri, E. H. Osmium-isotope variations in Hawaiian lavas: evidence for recycled oceanic lithosphere in the Hawaiian plume. Earth Planet. Sci. Lett. 164, 483–496 (1998)

    Article  ADS  CAS  Google Scholar 

  17. Kogiso, T., Hirschmann, M. M. & Reiners, P. W. Length scales of mantle heterogeneities and their relationship to ocean island basalt geochemistry. Geochim. Cosmochim. Acta 68, 345–360 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Ryabchikov, I. D. High NiO content in mantle-derived magmas as evidence for material transfer from the Earth's core. Dokl. Earth Sci. 389, 437–439 (2003)

    Google Scholar 

  19. Brandon, A. D., Norman, M. D., Walker, R. J. & Morgan, J. W. Os-186-Os-187 systematics of Hawaiian picrites. Earth Planet. Sci. Lett. 174, 25–42 (1999)

    Article  ADS  CAS  Google Scholar 

  20. Humayun, M., Qin, L. P. & Norman, M. D. Geochemical evidence for excess iron in the mantle beneath Hawaii. Science 306, 91–94 (2004)

    Article  ADS  CAS  Google Scholar 

  21. Ribe, N. M. & Christensen, U. R. The dynamical origin of Hawaiian volcanism. Earth Planet. Sci. Lett. 171, 517–531 (1999)

    Article  ADS  CAS  Google Scholar 

  22. Vidal, V. & Bonneville, A. Variations of the Hawaiian hot spot activity revealed by variations in the magma production rate. J. Geophys. Res. Solid Earth 109, B03104 (2004)

    Article  ADS  Google Scholar 

  23. Van Ark, E. & Lin, J. Time variation in igneous volume flux of the Hawaii-Emperor hot spot seamount chain. J. Geophys. Res. Solid Earth 109, B11401 (2004)

    Article  ADS  Google Scholar 

  24. Li, X. Q., Kind, R., Yuan, X. H., Wolbern, I. & Hanka, W. Rejuvenation of the lithosphere by the Hawaiian plume. Nature 427, 827–829 (2004)

    Article  ADS  CAS  Google Scholar 

  25. Hofmann, A. W. & White, W. M. Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett. 57, 421–436 (1982)

    Article  ADS  CAS  Google Scholar 

  26. Yasuda, A., Fujii, T. & Kurita, K. Melting phase relations of an anhydrous mid-ocean ridge basalt from 3 to 20 GPa: Implications for the behavior of subducted oceanic crust in the mantle. J. Geophys. Res. Solid Earth 99, 9401–9414 (1994)

    Article  Google Scholar 

  27. Yaxley, G. M. & Green, D. H. Reactions between eclogite and peridotite: mantle refertilisation by subduction of oceanic crust. Schweiz. Mineral. Petrogr. Mitt. 78, 243–255 (1998)

    CAS  Google Scholar 

  28. Korzhinskii, D. S. Theory of Metasomatic Zoning (Clarendon Press, Oxford, 1970)

    Google Scholar 

  29. Yaxley, G. M., Sobolev, A. V. & Snow, J. High-pressure partial melting of gabbro and the preservation of ‘ghost plagioclase’ signatures. Geochim. Cosmochim. Acta 68, A578 (2004)

    Google Scholar 

  30. Yaxley, G. M. Experimental study of the phase and melting relations of homogeneous basalt plus peridotite mixtures and implications for the petrogenesis of flood basalts. Contrib. Mineral. Petrol. 139, 326–338 (2000)

    Article  ADS  CAS  Google Scholar 

  31. Pertermann, M. & Hirschmann, M. M. Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: Constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate. J. Geophys. Res. Solid Earth 108(B2), 2125 (2003)

    Article  ADS  Google Scholar 

  32. Hauri, E. H. & Kurz, M. D. Melt migration and mantle chromatography, 2: a time-series Os isotope study of Mauna Loa Volcano, Hawaii. Earth Planet. Sci. Lett. 153, 21–36 (1997)

    Article  ADS  CAS  Google Scholar 

  33. Ono, S., Ito, E. & Katsura, T. Mineralogy of subducted basaltic crust (MORB) from 25 to 37 GPa, and chemical heterogeneity of the lower mantle. Earth Planet. Sci. Lett. 190, 57–63 (2001)

    Article  ADS  CAS  Google Scholar 

  34. Kogiso, T., Hirschmann, M. M. & Frost, D. J. High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts. Earth Planet. Sci. Lett. 216, 603–617 (2003)

    Article  ADS  CAS  Google Scholar 

  35. Morgan, J. P., Morgan, W. J. & Price, E. Hotspot melting generates both hotspot volcanism and a hotspot swell. J. Geophys. Res. Solid Earth 100, 8045–8062 (1995)

    Article  Google Scholar 

  36. Li, X. et al. Mapping the Hawaiian plume conduit with converted seismic waves. Nature 405, 938–941 (2000)

    Article  ADS  CAS  Google Scholar 

  37. Kelemen, P. B., Shimizu, N. & Salters, V. J. M. Extraction of Mid-Ocean-Ridge Basalt from the Upwelling Mantle by Focused Flow of Melt in Dunite Channels. Nature 375, 747–753 (1995)

    Article  ADS  CAS  Google Scholar 

  38. Haskins, E. H. & Garcia, M. O. Scientific drilling reveals geochemical heterogeneity within the Ko'olau shield, Hawai'i. Contrib. Mineral. Petrol. 147, 162–188 (2004)

    Article  ADS  CAS  Google Scholar 

  39. Gibson, S. A., Thompson, R. N. & Dickin, A. P. Ferropicrites: geochemical evidence for Fe-rich streaks in upwelling mantle plumes. Earth Planet. Sci. Lett. 174, 355–374 (2000)

    Article  ADS  CAS  Google Scholar 

  40. Stolper, E. M., DePaolo, D. J. & Thomas, D. M. Introduction to special section: Hawaii Scientific Drilling Project. J. Geophys. Res. Solid Earth 101, 11593–11598 (1996)

    Article  Google Scholar 

  41. Yarosewich, E. J., Nelen, J. A. & Norberg, J. A. Reference sample for electron microprobe analysis. Geostand. Newsl. 4, 43–47 (1980)

    Article  Google Scholar 

  42. Hauri, E. SIMS analysis of volatiles in silicate glasses, 2: isotopes and abundances in Hawaiian melt inclusions. Chem. Geol. 183, 115–141 (2002)

    Article  ADS  CAS  Google Scholar 

  43. Garcia, M. O., Foss, D. J. P., West, H. B. & Mahoney, J. J. Geochemical and isotopic evolution of Loihi Volcano, Hawaii. J. Petrol. 36, 1647–1674 (1995)

    CAS  Google Scholar 

  44. Danyushevsky, L. V. The effect of small amounts of H2O crystallisation of mid-ocean ridge and backarc basin magmas. J. Volcanol. Geotherm. Res. 110, 265–280 (2001)

    Article  ADS  CAS  Google Scholar 

  45. Manglik, A. & Christensen, U. R. Effect of mantle depletion buoyancy on plume flow and melting beneath a stationary plate. J. Geophys. Res. Solid Earth 102, 5019–5028 (1997)

    Article  Google Scholar 

  46. Lehnert, K. A. et al. A global geochemical database: Application to mid-ocean ridges and ocean islands. Eos 79 (Fall Meet. Suppl.), F44 (1998)

    Google Scholar 

  47. Garcia, M. O. in Hawaiian Volcanoes: Deep Underwater Perspectives (eds Takahashi, E., Lipman, P. W., Garcia, O. M., Naka, J. & Aramaki, S.) 391–402 (Geophys. Monogr. 128, AGU, Washington DC, 2002)

    Book  Google Scholar 

  48. Bennett, V. C., Esat, T. M. & Norman, M. D. Two mantle-plume components in Hawaiian picrites inferred from correlated Os-Pb isotopes. Nature 381, 221–224 (1996)

    Article  ADS  CAS  Google Scholar 

  49. Blichert-Toft, I., Frey, F. A. & Albarede, F. Hf isotope evidence for pelagic sediments in the source of Hawaiian basalts. Science 285, 879–882 (1999)

    Article  CAS  Google Scholar 

  50. Kurz, M. D., Curtice, J., Lott, D. E. & Solow, A. Rapid helium isotopic variability in Mauna Kea shield lavas from the Hawaiian Scientific Drilling Project. Geochem. Geophys. Geosyst. 5, Q04G14 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the HSDP and KSDP teams, A.T. Anderson and A. Rocholl for providing samples; E. Yarosewich for supplying microprobe standards; B. Schulz-Dobrick for supervising the purchase and installation of the Jeol Jxa 8200 Electron Microprobe in the Max Planck Institute for Chemistry; E. Macsenaere-Riester for assistance with this; A. Gurenko and N. Groschopf for maintaining the microprobe; A. Yasevich, V. Sobolev and M. Kamenetsky for help in sample preparation; D. Kuzmin for help in electron probe analyses; D. Kuzmin, V. Kamenetsky and V. Batanova for providing unpublished olivine analyses; L. Danyushevsky for making access available to PETROLOG thermodynamic modelling software and for updating it for use with nickel; C. Herzberg, V. Kamenetsky, A. Gurenko, H. Dick, G. Woerner, C. Langmuir, P. Kelemen, L. Kogarko, I. Ryabchikov, A. Ariskin and D. DePaolo for discussions; and M. Garcia, L. Danyushevsky, S. Huang, M. Portnyagin, K. Putirka and D. Canil for comments that improved the clarity of the manuscript. This work was supported by a Wolfgang Paul Award of the Alexander von Humboldt Foundation to A.V.S. Partial support was received from the Russian Academy of Science and Russian Federation President's grants to A.V.S. and from ISES (Netherlands Research Centre for Integrated Solid Earth Science) to I.K.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Sobolev.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Methods (detailed explanations of geochemical and physical modeling), Supplementary Equations, Supplementary Tables S1-S3, Supplementary Figure S1 and additional references. (PDF 426 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sobolev, A., Hofmann, A., Sobolev, S. et al. An olivine-free mantle source of Hawaiian shield basalts. Nature 434, 590–597 (2005). https://doi.org/10.1038/nature03411

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03411

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing