Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction

Abstract

Microbial expansion following faunal mass extinctions in Earth history can be studied by petrographic examination of microbialites (microbial crusts)1,2 or well-preserved organic-walled microbes3. However, where preservation is poor, quantification of microbial communities can be problematic. We have circumvented this problem by adopting a lipid biomarker-based approach to evaluate microbial community changes across the Permo/Triassic (P/Tr) boundary at Meishan in South China. We present here a biomarker stratigraphic record showing episodic microbial changes coupled with a high-resolution record of invertebrate mass extinction. Variation in the microbial community structure is characterized by the 2-methylhopane (2-MHP) index (a ratio of the abundance of cyanobacterial biomarkers to more general bacterial biomarkers). Two episodes of faunal mass extinction were each preceded by minima in the 2-MHP index, followed by strong maxima, likely reflecting microbial responses to the catastrophic events that caused the extinction and initiated ecosystem changes. Hence, both cyanobacterial biomarker and invertebrate fossil records provide evidence for two episodes of biotic crisis across the P/Tr boundary.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Profiles of the lithology, 2-MHP indices, the ratio of 2-MHP to steranes (2-MHP/STN) and the extinction probability of marine invertebrates across the P/Tr boundary at the Meishan sections in Zhejiang, South China.
Figure 2: Plots showing the increase in 2-MHP indices (error bars, 2σ) within individual beds after the faunal mass extinctions 2 and 3, together with the Tmax values (numbers on right-hand side) indicating the maturity of the organic matter.

Similar content being viewed by others

References

  1. Lehrmann, D. J. et al. Permian-Triassic boundary sections from shallow-marine carbonate platforms of the Nanpanjiang Basin, south China: Implications for oceanic conditions associated with the end-Permian extinction and its aftermath. Palaios 18, 138–152 (2003)

    Article  ADS  Google Scholar 

  2. Sheehan, P. M. & Harris, M. T. Microbialite resurgence after the Late Ordovician extinction. Nature 430, 75–78 (2004)

    Article  ADS  CAS  Google Scholar 

  3. Knoll, A. H. & Walter, M. W. Latest Proterozoic stratigraphy and Earth history. Nature 356, 673–678 (1992)

    Article  ADS  CAS  Google Scholar 

  4. Summons, R. E., Jahnke, L. L., Hope, J. M. & Logan, G. A. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400, 554–557 (1999)

    Article  ADS  CAS  Google Scholar 

  5. Simonin, P., Jurgens, U. J. & Rohmer, M. Bacterial triterpenoids of the hopane series from the prochlorophyte Prochlorothrix hollandica and their intracellular localization. Eur. J. Biochem. 241, 865–871 (1996)

    Article  CAS  Google Scholar 

  6. Rohmer, M., Bouvier-Nave, P. & Ourisson, G. Distribution of hopanoid triterpenes in prokaryotes. J. Gen. Microbiol. 130, 1137–1150 (1984)

    CAS  Google Scholar 

  7. Rohmer, M., Bisseret, P. & Neunlist, S. in Biological Markers in Sediments and Petroleum (eds Moldowan, J. M., Albrecht, P. & Philp, R. P.) 1–17 (Prentice Hall, New Jersey, 1992)

    Google Scholar 

  8. Jin, Y. G. et al. Pattern of marine mass extinction near the Permian-Triassic boundary in South China. Science 289, 432–436 (2000)

    Article  ADS  CAS  Google Scholar 

  9. Yin, H., Zhang, K., Tong, J., Yang, Z. & Wu, S. The Global Stratotype Section and Point (GSSP) of the Permian-Triassic boundary. Episodes 24, 102–114 (2001)

    Google Scholar 

  10. Brocks, J. J., Buick, R., Summons, R. E. & Logan, G. A. A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia. Geochim. Cosmochim. Acta 67, 4321–4335 (2003)

    Article  ADS  CAS  Google Scholar 

  11. Wignall, P. B. & Hallam, A. Griesbachian (Earliest Triassic) palaeoenvironmental changes in the Salt Range, Pakistan and Southeast China and their bearing on the Permian-Triassic mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 102, 215–237 (1993)

    Article  Google Scholar 

  12. Yin, H. et al. The Palaeozoic-Mesozoic Boundary, Candidates of Global Stratotype Section and Point of the Permian-Triassic Boundary (China Univ. of Geosciences Press, Wuhan, 1996)

    Google Scholar 

  13. Lai, X., Wignall, P. & Zhang, K. Palaeoecology of the conodonts Hindeodus and Clarkina during the Permian-Triassic transitional period. Palaeogeogr. Palaeoclimatol. Palaeoecol. 171, 63–72 (2001)

    Article  Google Scholar 

  14. Yin, H. & Tong, J. Multidisciplinary high-resolution correlation of the Permian-Triassic boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 143, 199–212 (1998)

    Article  Google Scholar 

  15. Hallam, A. & Wignall, P. Mass Extinctions and their Aftermath (Oxford Univ. Press, Oxford, 1997)

    Google Scholar 

  16. Valentine, J. W. & Jablonski, D. Mass extinctions: sensitivity of marine larval types. Proc. Natl Acad. Sci. USA 83, 6912–6914 (1986)

    Article  ADS  CAS  Google Scholar 

  17. Dionisio-Pires, L. M., Jonker, R. R., Van Donk, E. & Laanbroek, H. J. Selective grazing by adults and larvae of the zebra mussel (Dreissena polymorpha): application of flow cytometry to natural seston. Freshwat. Biol. 49, 116–126 (2004)

    Article  Google Scholar 

  18. Erwin, D. H. The end-Permian mass extinction. Annu. Rev. Ecol. Syst. 21, 495–516 (1990)

    Article  Google Scholar 

  19. Racki, G. Silica-secreting biota and mass extinctions: survival patterns and processes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 154, 107–132 (1999)

    Article  Google Scholar 

  20. Keeling, M. J., Wilson, H. B. & Pacala, S. W. Reinterpreting space, time lags, and functional responses in ecological models. Science 290, 1758–1761 (2000)

    Article  ADS  CAS  Google Scholar 

  21. Erwin, D. H. Lessons from the past: biotic recoveries from mass extinction. Proc. Natl Acad. Sci. USA 98, 5399–5403 (2001)

    Article  ADS  CAS  Google Scholar 

  22. Vecoli, M. & Le Herisse, A. Biostratigraphy, taxonomic diversity and patterns of morphological evolution of Ordovician acritarchs (organic-walled microphytoplankton) from the northern Gondwana margin in relation to palaeoclimatic and palaeogeographic changes. Earth-Sci. Rev. 67, 267–311 (2004)

    Article  ADS  Google Scholar 

  23. Rampino, M. R. & Adler, A. C. Evidence for abrupt latest Permian mass extinction of foraminifera: results of tests for the Signor-Lipps effect. Geology 26, 415–418 (1998)

    Article  ADS  CAS  Google Scholar 

  24. Mastin, B. J., Rodger, J. H. Jr & Deardorff, T. L. Risk evaluation of cyanobacteria-dominated algal blooms in a North Louisiana reservoir. J. Aquatic Ecosyst. Stress Recovery 9, 103–114 (2002)

    Article  CAS  Google Scholar 

  25. Retallack, G. J. Search for evidence of impact at the Permian-Triassic boundary in Antarctica and Australia. Geology 26, 979–982 (1998)

    Article  ADS  Google Scholar 

  26. Ward, P. D., Montgomery, D. R. & Smith, R. Altered river morphology in South Africa related to the Permian-Triassic extinction. Science 289, 1740–1743 (2000)

    Article  ADS  CAS  Google Scholar 

  27. Yang, Z. Y. et al. Permo-Triassic Events of South China (Geological Publishing House, Beijing, 1993)

    Google Scholar 

  28. Erwin, D. H., Bowring, S. A. & Jin, Y. in Special Paper 356, Catastrophic Events and Mass Extinctions: Impacts and Beyond (eds Koeberl, C. & MacLeod, K. G.) 363–383 (Geological Society of America, Boulder, 2002)

    Book  Google Scholar 

Download references

Acknowledgements

We thank F. Yang, S. Wu, G. Zhu, J. Huang, Y. Yi and J. Yu for field assistance, L. Lu, D. Jiao and X. Huang for sample processing, and M. Benton for constructive comments on the manuscript. The authors thank I. D. Bull and R. Berstan for their technical assistance and the NERC for funding the Bristol node of the Life Sciences Mass Spectrometry Facility (http://www.chm.bris.ac.uk/lsmsf/index.html). This work was supported by National Natural Science Foundation (H. Y.), NCET programme of Ministry of Education of China (S. X.) and the Lab of Bio- and Environmental Geology in China University of Geosciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Pancost.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Table S1

This table shows some organic geochemical data from section B at Meishan. (DOC 77 kb)

Supplementary Table S2

This table shows the faunal species data at different horizons from Meishan sections, including the number of extinction species, survivors and originating species, and the calculated faunal extinction probability. (DOC 33 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, S., Pancost, R., Yin, H. et al. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature 434, 494–497 (2005). https://doi.org/10.1038/nature03396

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03396

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing