Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Affinities of ‘hyopsodontids’ to elephant shrews and a Holarctic origin of Afrotheria

Abstract

Macroscelideans (elephant shrews or sengis) are small-bodied (25–540 g), cursorial (running) and saltatorial (jumping), insectivorous and omnivorous1 placental mammals represented by at least 15 extant African species classified in four genera2. Macroscelidea is one of several morphologically diverse but predominantly African placental orders classified in the superorder Afrotheria by molecular phylogeneticists3,4. The distribution of modern afrotheres, in combination with a basal position for Afrotheria within Placentalia and molecular divergence-time estimates, has been used to link placental diversification with the mid-Cretaceous separation of South America and Africa4. Morphological phylogenetic analyses do not support Afrotheria5,6,7 and the fossil record favours a northern origin of Placentalia8. Here we describe fossil postcrania that provide evidence for a close relationship between North American Palaeocene–Eocene apheliscine ‘hyopsodontid’ ‘condylarths’ (early ungulates or hoofed mammals) and extant Macroscelidea. Apheliscine postcranial morphology is consistent with a relationship to other ungulate-like afrotheres (Hyracoidea, Proboscidea) but does not provide support for a monophyletic Afrotheria. As the oldest record of an afrothere clade, identification of macroscelidean relatives in the North American Palaeocene argues against an African origin for Afrotheria, weakening support for linking placental diversification to the break-up of Gondwana.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of apheliscine and macroscelidean long bones.
Figure 2: Comparison of apheliscine and macroscelidean tarsals.
Figure 3: Phylogenetic relationships of apheliscines.

Similar content being viewed by others

References

  1. Kingdon, J. East African Mammals. Volume IIA: Insectivores and Bats (Univ. Chicago Press, Chicago, 1974)

    Google Scholar 

  2. Rathbun, G. B. The social structure and ecology of elephant-shrews. Z. Tierpsychol. 20 (suppl.), 1–77 (1979)

    Google Scholar 

  3. Stanhope, M. J. et al. Molecular evidence for multiple origins of Insectivora and for a new order of endemic African insectivore mammals. Proc. Natl Acad. Sci. USA 95, 9967–9972 (1998)

    Article  ADS  CAS  Google Scholar 

  4. Murphy, W. J. et al. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294, 2348–2351 (2001)

    Article  ADS  CAS  Google Scholar 

  5. Asher, R. J. A morphological basis for assessing the phylogeny of the “Tenrecoidea” (Mammalia, Lipotyphla). Cladistics 15, 231–252 (1999)

    Google Scholar 

  6. Whidden, H. P. Extrinsic snout musculature in Afrotheria and Lipotyphla. J. Mammal. Evol. 9, 161–184 (2002)

    Article  Google Scholar 

  7. Asher, R. J., Novacek, M. J. & Geisler, J. H. Relationships of endemic African mammals and their fossil relatives based on morphological and molecular evidence. J. Mammal. Evol. 10, 131–194 (2003)

    Article  Google Scholar 

  8. Archibald, J. D. Timing and biogeography of the eutherian radiation: fossils and molecules compared. Mol. Phylogenet. Evol. 28, 350–359 (2003)

    Article  Google Scholar 

  9. Novacek, M. J. The skull of leptictid insectivorans and the higher-level classification of eutherian mammals. Bull. Am. Mus. Nat. Hist. 183, 1–111 (1986)

    Google Scholar 

  10. Novacek, M. J. & Wyss, A. Higher-level relationships of the recent eutherian orders: morphological evidence. Cladistics 2, 257–287 (1986)

    Article  Google Scholar 

  11. Meng, J., Hu, Y. & Li, C. The osteology of Rhombomylus (Mammalia, Glires): implications for phylogeny and evolution of Glires. Bull. Am. Mus. Nat. Hist. 275, 1–247 (2003)

    Article  Google Scholar 

  12. Hartenberger, J.-L. Hypothèse paléontologique sur l'origine des Macroscelidea (Mammalia). C.R. Acad. Sci. II 302, 247–249 (1986)

    Google Scholar 

  13. Simons, E. L., Holroyd, P. A. & Bown, T. M. Early Tertiary elephant-shrews from Egypt and the origin of the Macroscelidea. Proc. Natl Acad. Sci. USA 88, 9734–9737 (1991)

    Article  ADS  CAS  Google Scholar 

  14. Butler, P. M. Fossil Macroscelidea. Mamm. Rev. 25, 3–14 (1995)

    Article  Google Scholar 

  15. Tabuce, R., Coiffait, B., Coiffait, P.-E., Mahboubi, M. & Jaeger, J.-J. A new genus of Macroscelidea (Mammalia) from the Eocene of Algeria: a possible origin for elephant-shrews. J. Vertebr. Paleontol. 21, 535–546 (2001)

    Article  Google Scholar 

  16. McKenna, M. C. & Bell, S. K. Classification of Mammals Above the Species Level (Colombia Univ. Press, New York, 1997)

    Google Scholar 

  17. Archibald, J. D. in Evolution of Tertiary Mammals of North America. Volume 1: Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals (eds Janis, C. M., Scott, K. M. & Jacobs, L. L.) 292–331 (Cambridge Univ. Press, Cambridge, 1998)

    Google Scholar 

  18. Cifelli, R. L. The origin and affinities of the South American Condylarthra and early Tertiary Litopterna (Mammalia). Am. Mus. Novit. 2772, 1–48 (1983)

    Google Scholar 

  19. Gazin, C. L. A study of the Eocene condylarthran mammal Hyopsodus . Smithson. Misc. Coll. 153, 1–90 (1968)

    Google Scholar 

  20. Van Valen, L. M. New Paleocene insectivores and insectivore classification. Bull. Am. Mus. Nat. Hist. 135, 217–284 (1967)

    Google Scholar 

  21. Rose, K. D. The Clarkforkian land-mammal age and mammalian faunal composition across the Paleocene-Eocene boundary. Univ. Mich. Pap. Paleontol. 26, 1–197 (1981)

    Google Scholar 

  22. Jennings, M. R. & Rathbun, G. B. Petrodromus tetradactylus. Mamm. Species 682, 1–6 (2001)

    Article  Google Scholar 

  23. Rose, K. D. Postcranial skeletal remains and adaptations in early Eocene mammals from the Willwood Formation, Bighorn Basin, Wyoming. Spec. Pap. Geol. Soc. Am. 243, 107–133 (1990)

    Google Scholar 

  24. Court, N. Limb posture and gait in Numidotherium koholense, a primitive proboscidean from the Eocene of Algeria. Zool. J. Linn. Soc. 111, 297–338 (1994)

    Article  Google Scholar 

  25. MacPhee, R. D. E. Morphology, adaptations, and relationships of Plesiorycteropus, and a diagnosis of a new order of eutherian mammals. Bull. Am. Mus. Nat. Hist. 220, 1–214 (1994)

    Google Scholar 

  26. Godinot, M., Smith, T. & Smith, R. Mode de vie et affinités de Paschatherium (Condylarthra, Hyopsodontidae) d'après ses os du tarse. Palaeovertebrata 25, 225–242, plate 1–2 (1996)

    Google Scholar 

  27. Szalay, F. S. Evolutionary History of the Marsupials and an Analysis of Osteological Characters (Cambridge Univ. Press, Cambridge, 1994)

    Google Scholar 

  28. Savage, R. J. G., Domning, D. P. & Thewissen, J. G. M. Fossil Sirenia of the West Atlantic and Caribbean region. V. The most primitive known sirenian, Prorastomus sirenoides Owen, 1855. J. Vertebr. Paleontol. 14, 427–449 (1994)

    Article  Google Scholar 

  29. Ginsburg, L., Durrani, K. H., Kassi, A. M. & Welcomme, J.-L. Discovery of a new Anthracobunidae (Tethytheria, Mammalia) from the lower Eocene lignite of the Kach-Harnai area in Baluchistan (Pakistan). C.R. Acad. Sci. IIa 328, 209–213 (1999)

    Google Scholar 

  30. Thewissen, J. G. M. Cephalic evidence for the affinities of Tubulidentata. Mammalia 49, 257–284 (1985)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank: T. M. Bown, for collection of the original Apheliscus skeletal association; D. Diveley, J. Meng (American Museum of Natural History), R. Emry, L. Gordon, H. Kafka, J. Mead, R. Purdy (USNM) and P. Houde (New Mexico State University) for access to specimens; D. M. Boyer for helpful discussions; J. C. Mussell for advice and comments on the manuscript; and D. B. Weishampel for access to equipment and facilities. We would also like to thank G. B. Rathbun for access to high quality images of sengis. Support of fieldwork leading to these discoveries has been provided by the US National Science Foundation and the Bureau of Land Management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shawn P. Zack.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Data

This file contains: principal specimens examined; extant comparative material examined; modifications to existing character-taxon matrices; new character-taxon matrix; analyses performed and results (including Supplementary Figs 1-3); and Supplementary bibliography. (DOC 1736 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zack, S., Penkrot, T., Bloch, J. et al. Affinities of ‘hyopsodontids’ to elephant shrews and a Holarctic origin of Afrotheria. Nature 434, 497–501 (2005). https://doi.org/10.1038/nature03351

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03351

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing