Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean

Abstract

Biological productivity in most of the world's oceans is controlled by the supply of nutrients to surface waters. The relative balance between supply and removal of nutrients—including nitrogen, iron and phosphorus—determines which nutrient limits phytoplankton growth. Although nitrogen limits productivity in much of the ocean1,2, large portions of the tropics and subtropics are defined by extreme nitrogen depletion. In these regions, microbial denitrification removes biologically available forms of nitrogen from the water column, producing substantial deficits relative to other nutrients3,4,5. Here we demonstrate that nitrogen-deficient areas of the tropical and subtropical oceans are acutely vulnerable to nitrogen pollution. Despite naturally high nutrient concentrations and productivity6,7,8, nitrogen-rich agricultural runoff fuels large (54–577 km2) phytoplankton blooms in the Gulf of California. Runoff exerts a strong and consistent influence on biological processes, in 80% of cases stimulating blooms within days of fertilization and irrigation of agricultural fields. We project that by the year 2050, 27–59% of all nitrogen fertilizer will be applied in developing regions located upstream of nitrogen-deficient marine ecosystems. Our findings highlight the present and future vulnerability of these ecosystems to agricultural runoff.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SeaWiFS image of chlorophyll a in the GOC from 6 April 1998, one day after peak irrigation.
Figure 2: Five-year time series.

Similar content being viewed by others

References

  1. Tyrrell, T. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400, 525–531 (1999)

    Article  ADS  CAS  Google Scholar 

  2. Corredor, J. E., Howarth, R. W., Twilley, R. R. & Morell, J. M. Nitrogen cycling and anthropogenic impact in the tropical interamerican seas. Biogeochemistry 46, 163–178 (1999)

    CAS  Google Scholar 

  3. Gruber, N. & Sarmiento, J. L. Global patterns of marine nitrogen fixation and denitrification. Glob. Biogeochem. Cycles 11, 235–266 (1997)

    Article  ADS  CAS  Google Scholar 

  4. Deutsch, C., Gruber, N., Key, R. M., Sarmiento, J. L. & Ganachaud, A. Denitrification and N2 fixation in the Pacific Ocean. Glob. Biogeochem. Cycles 15, 483–506 (2001)

    Article  ADS  CAS  Google Scholar 

  5. Tyrrell, T. & Law, C. S. Low nitrate:phosphate ocean ratios corrected. Nature 393, 318 (1998)

    Article  ADS  Google Scholar 

  6. Zeitzschel, B. Primary productivity in the Gulf of California. Mar. Biol. 3, 201–207 (1969)

    Article  Google Scholar 

  7. Alvarez-Borrego, S., Rivera, J. A., Gaxiola-Castro, G., Acosta-Ruiz, M. & Schwartzlose, R. A. Nutrientes in el Golfo de California. Ciencias Marinas 5, 53–71 (1978)

    Article  CAS  Google Scholar 

  8. Alvarez-Borrego, S. in A New Island Biogeography of the Sea of Cortes (eds Case, T. J., Cody, M. L. & Ezcurra, E.) 41–59 (Oxford Univ. Press, New York, 2002)

    Google Scholar 

  9. Beron-Vera, F. J. & Ripa, P. Three-dimensional aspects of the seasonal heat balance in the Gulf of California. J. Geophys. Res. 105, 11441–11457 (2000)

    Article  ADS  Google Scholar 

  10. Galloway, J. N. et al. The nitrogen cascade. Bioscience 53, 341–356 (2003)

    Article  Google Scholar 

  11. Tilman, D. G. et al. Forecasting agriculturally driven global environmental change. Science 292, 281–284 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Naylor, R., Falcon, W. P. & Puente-Gonzalez, A. Policy Reforms and Mexican Agriculture: Views from the Yaqui Valley (CIMMYT Economics Program Paper no. 01–01, CIMMYT, Mexico City, 2001).

  13. Harrison, J. A. Nitrogen Dynamics and Greenhouse Gas Production in Yaqui Valley Surface Drainage Waters. PhD thesis, Stanford Univ (2003)

    Google Scholar 

  14. Harrison, J. A. & Matson, P. A. Patterns and controls of nitrous oxide emissions from waters draining a subtropical agricultural valley. Glob. Biogeochem. Cycles 17, 1080, doi:10.1029/2002GB001991 (2003)

    Article  ADS  Google Scholar 

  15. Matson, P. A., Naylor, R. & Ortiz-Monasterio, I. Integration of environmental, agronomic, and economic aspects of fertilizer management. Science 280, 112–115 (1998)

    Article  ADS  CAS  Google Scholar 

  16. Riley, W. J., Ortiz-Monasterio, I. & Matson, P. A. Nitrogen leaching and soil nitrate, nitrite, and ammonium levels under irrigated wheat in Northern Mexico. Nutrient Cycling Agroecosyst. 61, 223–236 (2001)

    Article  CAS  Google Scholar 

  17. Kahru, M., Marinone, S. G., Lluch-Cota, S. E., Pares-Sierra, A. & Mitchell, B. G. Ocean color variability in the Gulf of California: scales from days to ENSO. Deep-Sea Res. II 51, 139–146 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Switzer, A. C., Kamykowski, D. & Zentara, S.-J. Mapping nitrate in the global ocean using remotely sensed sea surface temperature. J. Geophys. Res. 108, 3280 (2003)

    Article  ADS  Google Scholar 

  19. McCullagh, P. & Nelder, J. A. Generalized Linear Models (Chapman and Hall, London, 1989)

    Book  Google Scholar 

  20. Pegau, W. S., Boss, E. & Martínez, A. Ocean color observations of eddies during the summer in the Gulf of California. Geophys. Res. Lett. 29, doi:10.1029/2001GL014076 (2002)

  21. Gaxiola-Castro, G., Alvarez-Borrego, S., Lavin, M., Zirino, A. & Najera-Martinez, S. Spatial variability of the photosynthetic parameters and biomass of the Gulf of California phytoplankton. J. Plankton Res. 21, 231–245 (1999)

    Article  Google Scholar 

  22. Mills, M. M., Ridame, C., Davey, M., La Roche, J. & Gelder, R. J. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 429, 292–294 (2004)

    Article  ADS  CAS  Google Scholar 

  23. Tyrrell, T. & Lucas, M. I. Geochemical evidence of denitrification in the Benguela upwelling system. Continental Shelf Res. 22, 2497–2511 (2002)

    Article  ADS  Google Scholar 

  24. Howell, E. A., Doney, S. C., Fine, R. A. & Olson, D. B. Geochemical estimates of denitrification in the Arabian Sea and the Bay of Bengal during WOCE. Geophys. Res. Lett. 24, 2549–2552 (1997)

    Article  ADS  CAS  Google Scholar 

  25. Valsaraj, C. P. & Rao, V. N. R. Nitrogen limitation in the tropical waters of the Bay of Bengal. Hydrobiologia 286, 139–148 (1994)

    Article  CAS  Google Scholar 

  26. Chen, Y. L., Chen, H.-Y., Karl, D. M. & Takahashi, M. Nitrogen modulates phytoplankton growth in spring in the South China Sea. Continental Shelf Res. 24, 527–541 (2004)

    Article  ADS  Google Scholar 

  27. Tilman, D. G., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002)

    Article  ADS  CAS  Google Scholar 

  28. Sala, E., Aburto-Oropeza, O., Reza, M., Paredes, G. & Lopez-Lemus, L. G. Fishing down coastal food webs in the Gulf of California. Fisheries 29, 19–25 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for funding from the David and Lucile Packard Foundation and the US NSF Graduate Research Fellowship Program. Thanks to G. van Djiken and R. Labiosa for remote sensing support, I. Ortiz-Monasterio for irrigation data, E. Cruz-Colin for sharing unpublished data, and K. Beman for editorial advice. We thank P. Vitousek and R. Dunbar for comments on an earlier draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Michael Beman.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Methods

Background on remote sensing data and processing. (RTF 9 kb)

Supplementary Figure S1

Identification of peaks in unfiltered and filtered chlorophyll time series. (PDF 420 kb)

Supplementary Video 1

SeaWiFS ocean colour images from the years 2000 and 2001. (QT 25739 kb)

Supplementary Legends

This file contains the Supplementary Legends for Supplementary Figure S1 and Supplementary Video 1. (DOC 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michael Beman, J., Arrigo, K. & Matson, P. Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean. Nature 434, 211–214 (2005). https://doi.org/10.1038/nature03370

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03370

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing