Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electronically soft phases in manganites

Abstract

The phenomenon of colossal magnetoresistance in manganites1 is generally agreed to be a result of competition between crystal phases with different electronic, magnetic and structural order; a competition which can be strong enough to cause phase separation between metallic ferromagnetic and insulating charge-modulated states2,3,4,5. Nevertheless, closer inspection of phase diagrams in many manganites reveals complex phases where the two order parameters of magnetism and charge modulation unexpectedly coexist6,7. Here we show that such experiments can be naturally explained within a phenomenological Ginzburg–Landau theory. In contrast to models where phase separation originates from disorder8 or as a strain-induced kinetic phenomenon9, we argue that magnetic and charge modulation coexist in new thermodynamic phases. This leads to a rich diagram of equilibrium phases, qualitatively similar to those seen experimentally. The success of this model argues for a fundamental reinterpretation of the nature of charge modulation in these materials, from a localized to a more extended ‘charge-density wave’ picture. The same symmetry considerations that favour textured coexistence of charge and magnetic order may apply to many electronic systems with competing phases. The resulting ‘electronically soft’ phases of matter with incommensurate, inhomogeneous and mixed order may be general phenomena in correlated systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Wave vector of the modulation q/a* versus temperature.
Figure 2: Schematic phase diagram that results from the minimization of the free energy.
Figure 3: Magnetization in the doping–temperature plane within phase modulation approximation for a particular choice of parameters.
Figure 4: Example solutions of the total free energy when all the order parameters are allowed to change spatially.

Similar content being viewed by others

References

  1. Tokura, Y. (ed.) Colossal Magnetoresistance Oxides (Gordon and Breach, New York, 2000)

  2. Mathur, N. D. & Littlewood, P. B. Mesoscopic textures in manganites. Phys. Today 56, 25–30 (2003)

    Article  ADS  CAS  Google Scholar 

  3. Mathur, N. D. & Littlewood, P. B. The self-organised phases of manganites. Sol. Stat. Commun. 119, 271–280 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Dagotto, E. Nanoscale Phase Separation and Colossal Magnetoresistance (Springer Series in Solid State Sciences Vol. 136, Springer, 2002)

    Google Scholar 

  5. Uehara, M., Mori, S., Chen, C. H. & Cheong, S.-W. Percolative phase separation underlies colossal magnetoresistance in mixed-valence manganites. Nature 399, 560–563 (1999)

    Article  ADS  CAS  Google Scholar 

  6. Loudon, J. C., Mathur, N. D. & Midgley, P. A. Charge-ordered ferromagnetic phase in La0.5Ca0.5MnO3 . Nature 420, 797–800 (2002)

    Article  ADS  CAS  Google Scholar 

  7. Chen, C. H. & Cheong, S.-W. Commensurate to incommensurate charge ordering and its real-space images in La0.5Ca0.5MnO3 . Phys. Rev. Lett. 76, 4042–4045 (1996)

    Article  ADS  CAS  Google Scholar 

  8. Burgy, J., Moreo, A. & Dagotto, E. Relevance of cooperative lattice effects and correlated disorder in phase separation theories for CMR manganites. Phys. Rev. Lett. 92, 097202 (2004)

    Article  ADS  Google Scholar 

  9. Ahn, K. H., Lookman, T. & Bishop, A. R. Strain-induced metal–insulator phase coexistence in perovskite manganites. Nature 428, 401–404 (2004)

    Article  ADS  CAS  Google Scholar 

  10. Goodenough, J. Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3 . Phys. Rev 100, 564–573 (1955)

    Article  ADS  CAS  Google Scholar 

  11. Herrero-Martín, J., García, J., Subías, G., Blasco, J. & Sánchez, M. C. Structural origin of dipole x-ray resonant scattering in the low-temperature phase of Nd0.5Sr0.5MnO3 . Phys. Rev. B 70, 024408 (2004)

    Article  ADS  Google Scholar 

  12. Brey, L. Continuous charge modulated diagonal phase in manganites. Phys. Rev. Lett. 92, 127202 (2004)

    Article  ADS  Google Scholar 

  13. Coey, M. Charge ordering in oxides. Nature 430, 155–156 (2004)

    Article  ADS  CAS  Google Scholar 

  14. Kajimoto, R., Yoshizawa, H., Tomioka, Y. & Tokura, Y. Commensurate-incommensurate transition in the melting process of orbital ordering in Pr0.5Ca0.5MnO3: A neutron diffraction study. Phys. Rev. B 63, 212407 (2001)

    Article  ADS  Google Scholar 

  15. Zimmermann, M. v. et al. X-ray resonant scattering studies of orbital and charge ordering in Pr1-x Ca x MnO3 . Phys. Rev. B 64, 195133 (2001)

    Article  ADS  Google Scholar 

  16. Larochelle, S. et al. Nature of e g electron order in La1-x Sr1+x MnO4 . Phys. Rev. Lett. 87, 095502 (2001)

    Article  ADS  CAS  Google Scholar 

  17. Jirak, Z., Krupicka, S., Simsa, Z., Dlouham, M. & Vratislav, S. Neutron diffraction study of Pr1-x Ca x MnO3 perovskites. J. Magn. Magn. Mater. 53, 153–166 (1985)

    Article  ADS  CAS  Google Scholar 

  18. Chen, C. H., Cheong, S.-W. & Hwang, H. Y. Charge ordered stripes in La1-x Ca x MnO3 . J. Appl. Phys. 81, 4326–4330 (1997)

    Article  ADS  CAS  Google Scholar 

  19. Chen, C. H., Mori, S. & Cheong, S.-W. Anomalous melting transition of the charge ordered state in manganites. Phys. Rev. Lett. 83, 4792–4795 (1999)

    Article  ADS  CAS  Google Scholar 

  20. Loudon, J. C. et al. Weak charge-lattice coupling requires reinterpretation of stripes of charge order in (La, Ca)MnO3. Preprint at http://www.arXiv.org/cond-mat/0308581 (2003).

  21. Schiffer, P., Ramirez, A. P., Bao, W. & Cheong, S.-W. Low temperature magnetoresistance and the magnetic phase diagram of La1-x Ca x MnO3 . Phys. Rev. Lett. 75, 3336–3339 (1995)

    Article  ADS  CAS  Google Scholar 

  22. Yoshizawa, H., Kawano, H., Tomioka, Y. & Tokura, Y. Neutron diffraction study of the magnetic-field-induced metal-insulator transition in Pr0.7Ca0.3MnO3 . Phys. Rev. B 52, R13145–R13148 (1995)

    Article  ADS  Google Scholar 

  23. Tolèdano, J. C. & Tolèdano, P. The Landau Theory of Phase Transitions Ch. 5 (World Scientific, Singapore, 1987)

    Book  Google Scholar 

  24. Murakami, S. & Nagaosa, N. Colossal magnetoresistance in manganites as multicritical phenomena. Phys. Rev. Lett. 90, 197201 (2003)

    Article  ADS  Google Scholar 

  25. Yamada, Y. & Takakura, T. Incommensurate orbital order and two-phase coexistence in doped manganites at metal-insulator phase boundary. J. Phys. Soc. Jpn 71, 2480–2484 (2002)

    Article  ADS  CAS  Google Scholar 

  26. Kajimoto, R. et al. Anomalous ferromagnetic spin fluctuations in an antiferromagnetic insulator Pr1-x Ca x MnO3 . Phys. Rev. B 58, R11837–R11840 (1998)

    Article  ADS  CAS  Google Scholar 

  27. Mathur, N. D. et al. Resistance of a domain wall in La0.7Ca0.3MnO3 . J. Appl. Phys. 86, 6287–6290 (1999)

    Article  ADS  CAS  Google Scholar 

  28. Rzchowski, M. S. & Joynt, R. Electronic inhomogeneity at magnetic domain walls in strongly-correlated systems. Europhys. Lett. 67, 287–293 (2004)

    Article  ADS  CAS  Google Scholar 

  29. Kivelson, S. A., Fradkin, E. & Emery, V. J. Electronic liquid-crystal phases of a doped Mott insulator. Nature 393, 550–553 (1998)

    Article  ADS  CAS  Google Scholar 

  30. McElroy, K. et al. Homogenous nodal superconductivity coexisting with inhomogeneous charge order in strongly underdoped Bi-2212. Preprint at http://www.arXiv.org/cond-mat/0404005 (2004).

Download references

Acknowledgements

We thank L. Brey and N. Mathur for discussions. P.B.L. thanks the National High Magnetic Field Laboratory of the Los Alamos National Laboratory for hospitality. M.J.C. acknowledges Churchill College, University of Cambridge, for the award of a JRF. This work was supported by the EPSRC and through the EPSRC Magnetic Oxide Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. Milward.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Table

This file contains the values of the parameters used in each of the figures in the main text and Supplementary Information. The range of parameters that produces the best fit with experimental results is also discussed. (PDF 55 kb)

Supplementary Figure 1

Wave-vector versus temperature for two different sets of parameters, to compare with Figure 1 in the main text. (PDF 26 kb)

Supplementary Figure 2

Deviation from commensurability in the doping-temperature plane. (PDF 76 kb)

Supplementary Figure 3

Another example of the solution beyond the Phase Modulation Approximation to compare with Figure 4 in the main text. (PDF 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milward, G., Calderón, M. & Littlewood, P. Electronically soft phases in manganites. Nature 433, 607–610 (2005). https://doi.org/10.1038/nature03300

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03300

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing