Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An all-silicon Raman laser

Abstract

The possibility of light generation and/or amplification in silicon has attracted a great deal of attention1 for silicon-based optoelectronic applications owing to the potential for forming inexpensive, monolithic integrated optical components. Because of its indirect bandgap, bulk silicon shows very inefficient band-to-band radiative electron–hole recombination. Light emission in silicon has thus focused on the use of silicon engineered materials such as nanocrystals2,3,4,5, Si/SiO2 superlattices6, erbium-doped silicon-rich oxides7,8,9,10, surface-textured bulk silicon11 and Si/SiGe quantum cascade structures12. Stimulated Raman scattering (SRS) has recently been demonstrated as a mechanism to generate optical gain in planar silicon waveguide structures13,14,15,16,17,18,19,20,21. In fact, net optical gain in the range 2–11 dB due to SRS has been reported in centimetre-sized silicon waveguides using pulsed pumping18,19,20,21. Recently, a lasing experiment involving silicon as the gain medium by way of SRS was reported, where the ring laser cavity was formed by an 8-m-long optical fibre22. Here we report the experimental demonstration of Raman lasing in a compact, all-silicon, waveguide cavity on a single silicon chip. This demonstration represents an important step towards producing practical continuous-wave optical amplifiers and lasers that could be integrated with other optoelectronic components onto CMOS-compatible silicon chips.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagrams showing silicon waveguide laser cavity and experimental set-up.
Figure 2: Nonlinear optical transmission of a 4.8-cm-long silicon waveguide containing a p-i-n diode with and without reverse bias.
Figure 3: Average output of the silicon Raman laser with reverse biased p-i-n diode as a function of the average pump power into the silicon waveguide cavity.
Figure 4: Silicon Raman laser spectra.

Similar content being viewed by others

References

  1. Pavesi, L., Gaponenko, S. & Dal Negro, L. (eds) Towards the First Silicon Laser (NATO science series, Kluwer, Dordrecht, 2003)

  2. Shimizu-Iwayama, T. et al. Visible photoluminescence in Si+-implanted silica glass. J. Appl. Phys. 75, 7779–7783 (1994)

    Article  ADS  CAS  Google Scholar 

  3. Brongersma, M. L., Polman, A., Min, K. S., Tambo, T. & Atwater, H. A. Tuning the emission wavelength of Si nanocrystals in SiO2 by oxidation. Appl. Phys. 72, 2577–2579 (1998)

    ADS  CAS  Google Scholar 

  4. Iacona, F., Franzo, G. & Spinella, C. Correlation between luminescence and structural properties of Si nanocrystals. J. Appl. Phys. 87, 1295–1303 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Pavesi, L., Negro, L. D., Mazzoleni, C., Franzo, G. & Priolo, F. Optical gain in silicon nanocrystals. Nature 408, 440–444 (2000)

    Article  ADS  CAS  Google Scholar 

  6. Lockwood, D. J., Lu, Z. H. & Baribeau, J. M. Quantum confined luminescence in Si/SiO2 superlattices. Phys. Rev. Lett. 76, 539–541 (1996)

    Article  ADS  CAS  Google Scholar 

  7. Lombardo, S., Campisano, S. U., van den Hoven, G. N., Cacciato, A. & Polman, A. Room-temperature luminescence from Er3+-implanted semi-insulating polycrystalline silicon. Appl. Phys. Lett. 63, 1942–1944 (1993)

    Article  ADS  CAS  Google Scholar 

  8. Fujii, M., Yoshida, M., Kanzawa, Y., Hayashi, S. & Yamamoto, K. 1.54 µm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: evidence for energy transfer from Si nanocrystals to Er3+ . Appl. Phys. Lett. 71, 1198–1200 (1997)

    Article  ADS  CAS  Google Scholar 

  9. Kik, P. G., Brongersma, M. L. & Polman, A. Strong exciton-erbium coupling in Si nanocrystal-doped SiO2 . Appl. Phys. Lett. 76, 2325–2327 (2000)

    Article  ADS  CAS  Google Scholar 

  10. Han, H. S., Seo, S. Y. & Shin, J. H. Optical gain at 1.54 µm in erbium-doped nanocluster sensitized waveguide. Appl. Phys. Lett. 79, 4568–4570 (2001)

    Article  ADS  CAS  Google Scholar 

  11. Trupke, T., Zhao, J., Wang, A., Corkish, R. & Green, M. Very efficient light emission from bulk crystalline silicon. Appl. Phys. Lett. 82, 2996–2998 (2003)

    Article  ADS  CAS  Google Scholar 

  12. Dehlinger, G. et al. Intersubband electroluminescence from silicon-based quantum cascade structures. Science 290, 2277–2280 (2000)

    Article  CAS  Google Scholar 

  13. Claps, R., Dimitropoulos, D., Han, Y. & Jalali, B. Observation of Raman emission in silicon waveguides at 1.54 µm. Opt. Express 10, 1305–1313 (2002)

    Article  ADS  CAS  Google Scholar 

  14. Claps, R., Dimitropoulos, D., Raghunathan, V., Han, Y. & Jalali, B. Observation of stimulated Raman amplification in silicon waveguides. Opt. Express 11, 1731–1739 (2003)

    Article  ADS  CAS  Google Scholar 

  15. Liang, T. K. & Tsang, H. K. Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides. Appl. Phys. Lett. 84, 2745–2747 (2004)

    Article  ADS  CAS  Google Scholar 

  16. Espinola, R. L., Dadap, J. I., Osgood, R. M. Jr, McNab, S. J. & Vlasov, Y. A. Raman amplification in ultrasmall silicon-on-insulator wire waveguides. Opt. Express 12, 3713–3718 (2004)

    Article  ADS  Google Scholar 

  17. Rong, H. et al. Raman gain and nonlinear optical absorption measurement in a low loss silicon waveguide. Appl. Phys. Lett. 85, 2196–2198 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Liu, A., Rong, H., Paniccia, M., Cohen, O. & Hak, D. Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering. Opt. Express 12, 4261–4267 (2004)

    Article  ADS  Google Scholar 

  19. Xu, Q., Almeida, V. & Lipson, M. Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides. Opt. Express 12, 4437–4442 (2004)

    Article  ADS  Google Scholar 

  20. Liang, T. K. & Tsang, H. K. Efficient Raman amplification in silicon-on-insulator waveguides. Appl. Phys. Lett. 85, 3343–3345 (2004)

    Article  ADS  CAS  Google Scholar 

  21. Boyraz, O. & Jalali, B. Demonstration of 11dB fiber-to-fiber gain in a silicon Raman amplifier. IEICE Elect. Express 1, 429–434 (2004)

    Article  Google Scholar 

  22. Boyraz, O. & Jalali, B. Demonstration of a silicon Raman laser. Opt. Express 12, 5269–5273 (2004)

    Article  ADS  CAS  Google Scholar 

  23. Agrawal, G. P. Nonlinear Fiber Optics 2nd edn (Academic, New York, 1995)

    MATH  Google Scholar 

  24. Reed, G. T. & Knights, A. P. Silicon Photonics: An Introduction (John Wiley, Chichester, UK, 2004)

    Book  Google Scholar 

  25. Tsang, H. K. et al. Optical dispersion, two photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength. Appl. Phys. Lett. 80, 416–418 (2002)

    Article  ADS  CAS  Google Scholar 

  26. Dinu, M., Quochi, F. & Garcia, H. Third-order nonlinearities in silicon telecom wavelengths. Appl. Phys. Lett. 82, 2954–2956 (2003)

    Article  ADS  CAS  Google Scholar 

  27. Soref, R. A. & Lorenzo, P. J. All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 µm. IEEE J. Quant. Electron. QE-22, 873–879 (1986)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Alduino, D. Tran, J. Tseng, D. Hodge and J. Johnson for assistance in device fabrication and sample preparation; S. Koehl for software development; M. Morse, H. Liu, M. Salib, D. Samararubio, L. Liao, R. Li and G. Ding for technical discussions; and G. T. Reed, I. P. Kaminow and J. E. Bowers for conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haisheng Rong.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rong, H., Liu, A., Jones, R. et al. An all-silicon Raman laser. Nature 433, 292–294 (2005). https://doi.org/10.1038/nature03273

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03273

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing