Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Natural and engineered nucleic acids as tools to explore biology

Abstract

RNA and DNA molecules can form complex, three-dimensional folded structures that have surprisingly sophisticated functions, including catalysing chemical reactions and controlling gene expression. Although natural nucleic acids make occasional use of these advanced functions, the true potential for sophisticated function by these biological polymers is far greater. An important challenge for biochemists is to take RNA and DNA beyond their proven use as polymers that form double-helical structures. Molecular engineers are beginning to harness the power of nucleic acids that form more complex three-dimensional structures, and apply them as tools for exploring biological systems and as therapeutics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Manipulating the expression and function of proteins with nucleic acids.
Figure 2: The generation and application of aptamers.
Figure 3: RNA-cleaving ribozymes and deoxyribozymes.
Figure 4: Allosteric ribozymes as precision biosensor elements.
Figure 5: Natural and engineered riboswitches for controlling gene expression.

Similar content being viewed by others

References

  1. Kolkman, J. A. & Stemmer, P. C. Directed evolution of proteins by exon shuffling. Nature Biotechnol. 19, 423–428 (2001).

    CAS  Google Scholar 

  2. Zhao, H., Chockalingam, K. & Chen, Z. Directed evolution of enzymes and pathways for industrial biocatalysis. Curr. Opin. Biotechnol. 13, 104–110 (2002).

    CAS  PubMed  Google Scholar 

  3. Joyce, G. F. Directed evolution of nucleic acid enzymes. Annu. Rev. Biochem. 73, 791–836 (2004).

    CAS  PubMed  Google Scholar 

  4. Wilson, D. S. & Szostak, J. W. In vitro selection of functional nucleic acids. Annu. Rev. Biochem. 68, 611–647 (1999).

    CAS  PubMed  Google Scholar 

  5. McPherson, M. J. & Møller, S. G. PCR (Springer, New York, 2000).

    Google Scholar 

  6. Dykxhoorn, D. M., Novina, C. D. & Sharp, P. A. Killing the messenger: short RNAs that silence gene expression. Nature Rev. Mol. Cell Biol. 23, 1961–1967 (2003).

    Google Scholar 

  7. Novina, C. D. & Sharp, P. A. The RNAi revolution. Nature 430, 161–164 (2004).

    ADS  CAS  PubMed  Google Scholar 

  8. Khudyakov, Y. E. & Fields, H. A. Artificial DNA: methods and applications (CRC, Boca Raton, Florida, 2002).

    Google Scholar 

  9. Muller, S., Wolf, J. & Ivanov, S. A. Current strategies for the synthesis of RNA. Curr. Org. Syn. 1, 293–307 (2004).

    Google Scholar 

  10. Milligan, J. F. & Uhlenbeck, O. C. Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 180, 51–62 (1989).

    CAS  PubMed  Google Scholar 

  11. Watson, J. D. & Crick, F. H. C. Molecular structure of nucleic acids. Nature 171, 737–738 (1953).

    ADS  CAS  PubMed  Google Scholar 

  12. Uhlenbeck, O. C. A small catalytic oligoribonucleotide. Nature 328, 596–600 (1989).

    ADS  Google Scholar 

  13. Nissen, P., Hansen, J., Ban, N., Moore, P. B. & Steitz, T. A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000).

    ADS  CAS  PubMed  Google Scholar 

  14. Steitz, T. A. & Moore, P. B. RNA, the first macromolecular catalyst: the ribosome is a ribozyme. Trends Biochem. Sci. 28, 411–418 (2003).

    CAS  PubMed  Google Scholar 

  15. Stein, C. A. & Krieg, A. M. Applied Antisense Oligonucleotide Technology. (eds Stein, C. A. & Krieg, A. M.) (Wiley, New York, 1998).

    Google Scholar 

  16. Crooke, S. T. Progress in antisense technology. Annu. Rev. Med. 55, 61–95 (2004).

    CAS  PubMed  Google Scholar 

  17. Reese, C. B. & Yan, H. B. Solution phase synthesis of ISIS 2922 (Vitravene) by the modified H-phosphonate approach. J. Chem. Soc. Perkins Trans. 1, 2619–2633 (2002).

    Google Scholar 

  18. Holmlund, J. T. Applying antisense technology. Ann. NY Acad. Sci. 1002, 244–251 (2003).

    ADS  CAS  PubMed  Google Scholar 

  19. Meister, G. & Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349 (2004).

    ADS  CAS  PubMed  Google Scholar 

  20. Eaton, B. E. & Pieken, W. A. Ribonucleosides and RNA. Annu. Rev. Biochem. 64, 837–863 (1995).

    CAS  PubMed  Google Scholar 

  21. Sarafianos, S. G., Hughes, S. H. & Arnold, E. Designing anti-AIDS drugs targeting the major mechanism of HIV-1 RT resistance to nucleoside analog drugs. Int. J. Biochem. Cell Biol. 36, 1706–1715 (2004).

    CAS  PubMed  Google Scholar 

  22. Gold, L., Polisky, B., Uhlenbeck, O. & Yarus, M. Diversity of oligonucleotide functions. Annu. Rev. Biochem. 64, 763–797 (1995).

    CAS  PubMed  Google Scholar 

  23. Osborne, S. E. & Ellington, A. D. Nucleic acid selection and the challenge of combinatorial chemistry. Chem. Rev. 97, 349–370 (1997).

    CAS  PubMed  Google Scholar 

  24. Koizumi, M., Soukup, G. A., Kerr, J. N. Q. & Breaker, R. R. Allosteric selection of ribozymes that respond to the second messengers cGMP and cAMP. Nature Struct. Biol. 6, 1062–1071 (1999).

    CAS  PubMed  Google Scholar 

  25. Soukup, G. A., DeRose, E. C., Koizumi, M. & Breaker, R. R. Generating new ligand-binding RNAs by affinity maturation and disintegration of allosteric ribozymes. RNA 7, 524–536 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Jayasena, S. D. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 9, 1628–1650 (1999).

    Google Scholar 

  27. Brockstedt, U., Uzarowska, A., Montpetit, A., Pfau, W. & Labuda, D. In vitro evolution of RNA aptamers recognizing carcinogenic aromatic amines. Biochem. Biophys. Res. Commun. 313, 1004–1008 (2004).

    CAS  PubMed  Google Scholar 

  28. Sayer, N. M. et al. Structural determinants of conformationally selective, prion-binding aptamers. J. Biol. Chem. 279, 13102–13109 (2004).

    CAS  PubMed  Google Scholar 

  29. Romig, T. S., Bell, C. & Drolet, D. W. Aptamer affinity chromatography: combinatorial chemistry applied to protein purification. J. Chromatogr. B. Biomed. Sci. Appl. 731, 275–284 (1999).

    CAS  PubMed  Google Scholar 

  30. Deng, Q., German, I., Buchanan, D. & Kennedy, R. T. Retention and separation of adenosine and analogues by affinity chromatography with an aptamer stationary phase. Anal. Chem. 73, 5415–5421 (2001).

    CAS  PubMed  Google Scholar 

  31. Hermann, T. & Patel, D. J. Adaptive recognition by nucleic acid aptamers. Science 287, 820–825 (2000).

    ADS  CAS  PubMed  Google Scholar 

  32. Hamaguchi, N., Ellington, A. & Stanton, M. Aptamer beacons for the direct detection of proteins. Anal. Biochem. 294, 126–131 (2001).

    CAS  PubMed  Google Scholar 

  33. McCauley, T. G., Hamaguchi, N. & Stanton, M. Aptamer-based biosensor arrays for detection and quantification of biological macromolecules. Anal. Biochem. 319, 244–250 (2003).

    CAS  PubMed  Google Scholar 

  34. Jhaveri, S., Rajendran, M. & Ellington, A. D. In vitro selection of signaling aptamers. Nature Biotechnol. 18, 1293–1297 (2000).

    CAS  Google Scholar 

  35. Peracchi, A. Prospects for antiviral ribozymes and deoxyribozymes. Rev. Med. Virol. 14, 47–64 (2004).

    CAS  PubMed  Google Scholar 

  36. Opalinska, J. B. & Gewirtz, A. M. Nucleic acid therapeutics: basic principles and recent applications. Nature Rev. Drug Disc. 1, 503–514 (2002).

    CAS  Google Scholar 

  37. Lin, Y., Qiu, Q., Gill, C. & Jayasena, S. D. Modified RNA sequence pools for in vitro selection. Nucleic Acids Res. 22, 5229–5234 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Beaudry, A., DeFoe, J., Zinnen, S., Burgin, A. & Beigelman, L. In vitro selection of a novel nuclease-resistant RNA phosphodiesterase. Chem. Biol. 7, 323–334 (2000).

    CAS  PubMed  Google Scholar 

  39. Famulok, M. & Verma, S. In vivo-applied functional RNAs as tools in proteomics and genomics research. Trends Biotechnol. 20, 462–466 (2002).

    CAS  PubMed  Google Scholar 

  40. Toulmé, J. -J., Di Primo, C. & Boucard, D. Regulating eukaryotic gene expression with aptamers. FEBS Lett. 567, 55–62 (2004).

    PubMed  Google Scholar 

  41. Homann, M. & Göringer, H. U. Uptake and intracellular transport of RNA aptamers in African trypanosomes suggests therapeutic ‘piggy-back’ approach. Bioorg. Med. Chem. 9, 2571–2580 (2001).

    CAS  PubMed  Google Scholar 

  42. Vater, A. & Klussmann, S. Towards third-generation aptamers: spiegelmers and their therapeutic prospects. Curr. Opin. Drug Disc. Devel. 6, 253–261 (2003).

    CAS  Google Scholar 

  43. Eulberg, D. & Klussmann, S. Spiegelmeers: biostable aptamers. Chembiochem. 4, 979–983 (2003).

    CAS  PubMed  Google Scholar 

  44. Nolte, A., Klussmann, S., Bald, R., Erdmann, V. A. & Furste, J. P. Mirror-design of L-oligonucleotide ligands binding to L-arginine. Nature Biotechnol. 14, 1112–1115 (1996).

    Google Scholar 

  45. Cox, J. C. & Ellington, A. D. Automated selection of anti-protein aptamers. Bioorg. Med. Chem. 9, 2525–2531 (2001).

    CAS  PubMed  Google Scholar 

  46. Sooter, L. J. et al. Towards automated nucleic acid enzyme selection. Biol. Chem. 9, 1327–1334 (2001).

    Google Scholar 

  47. Cox, J. C. et al. Automated acquisition of aptamer sequences. Comb. Chem. High Throughput Screen. 4, 289–299 (2002).

    Google Scholar 

  48. Cox, J. C. et al. Automated selection of aptamers against protein targets translated in vitro: from gene to aptamer. Nucleic Acids Res. 30, e108 (2002).

    PubMed  PubMed Central  Google Scholar 

  49. Csaky, K. Anti-vascular endothelial growth factor therapy for neovascular age-related macular degeneration: promises and pitfalls. Ophthalmology 110, 879–881 (2003).

    PubMed  Google Scholar 

  50. Boncler, M. A., Koziolkiewicz, M. & Watala, C. Aptamer inhibits degradation of platelet proteolytically activatable receptor, PAR-1, by thrombin. Thromb. Res. 104, 215–222 (2002).

    Google Scholar 

  51. Rusconi, C. P. et al. RNA aptamers as reversible antagonists of coagulation factor IXa. Nature 419, 90–94 (2002).

    ADS  CAS  PubMed  Google Scholar 

  52. Nissen, P., Hansen, J., Ban, N., Moore, P. B. & Steitz, T. A. The structural basis of ribosomal activity in peptide bond synthesis. Science 289, 920–930 (2000).

    ADS  CAS  PubMed  Google Scholar 

  53. Hansen, J. L. et al. The structures of four macrolide antibiotics bound to the large ribosomal subunit. Mol. Cell 10, 117–128 (2002).

    CAS  PubMed  Google Scholar 

  54. Hansen, J. L., Moore, P. B. & Steitz, T. A. Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit. J. Mol. Biol. 330, 1061–1075 (2003).

    CAS  PubMed  Google Scholar 

  55. Schlünzen, F. et al. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 413, 814–821 (2001).

    ADS  PubMed  Google Scholar 

  56. Bagheri, S. & Kashani-Sabet, M. Ribozymes in the age of molecular therapeutics. Curr. Mol. Med. 4, 489–506 (2004).

    CAS  PubMed  Google Scholar 

  57. Kawa, D., Wang, J., Yuan, Y. & Liu, F. Inhibition of viral gene expression by human ribonuclease P. RNA 4, 1397–1406 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Plehn-Dujowich, D. & Altman, S. Effective inhibition of influenza production in cultured cells by external guide sequences and ribonuclease P. Proc. Natl Acad. Sci. USA 95, 7327–7331 (1998).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rangarajan, S., Raj, M. L. S., Hernandez, J. M., Grotewold, E. & Gopalan, V. RNase P as a tool for disruption of gene expression in maize cells. Biomed. J. 380, 611–616 (2004).

    CAS  Google Scholar 

  60. Byun, J., Lan, N., Long, M. & Sullenger, B. A. Efficient and specific repair of sickle beta-globin RNA by trans-splicing ribozymes. RNA 9, 1254–1263 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Sullenger, B. A. & Gilboa, E. Emerging clinical applications of RNA. Nature 418, 252–258 (2002).

    ADS  CAS  PubMed  Google Scholar 

  62. Perutka, J., Wang, W. J., Goerlitz, D. & Lambowitz, A. M. Use of computer-designed group II introns to disrupt Escherichia coli DExH/D-box protein and DNA helicase genes. J. Mol. Biol. 336, 421–439 (2004).

    CAS  PubMed  Google Scholar 

  63. Jarvis, T. C. et al. Ribozymes as tools for therapeutic target validation in arthritis. J. Immunol. 165, 493–498 (2000).

    CAS  PubMed  Google Scholar 

  64. Wilson, C. & Szostak, J. W. In vitro evolution of a self-alkylating ribozyme. Nature 374, 777–782 (1995).

    ADS  CAS  PubMed  Google Scholar 

  65. Unrau, P. J. & Bartel, D. P. RNA-catalysed nucleotide synthesis. Nature 395, 260–263 (1998).

    ADS  CAS  PubMed  Google Scholar 

  66. Baskerville, S. & Bartel, D. P. A ribozyme that ligates RNA to protein. Proc. Natl Acad. Sci. USA 99, 9154–9159 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tang, J. & Breaker, R. R. Structural diversity of self-cleaving ribozymes. Proc. Natl Acad. Sci. USA 97, 5784–5789 (2000).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lazarev, D., Puskarz, I. & Breaker, R. R. Substrate specificity and reaction kinetics of an X-motif ribozyme. RNA 9, 688–697 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Emilsson, G. M. & Breaker, R. R. Deoxyribozymes: new activities and new applications. Cell. Mol. Life Sci. 59, 596–607 (2002).

    CAS  PubMed  Google Scholar 

  70. Santoro, S. W. & Joyce, G. F. A general purpose RNA-cleaving DNA enzyme. Proc. Natl Acad. Sci. USA 94, 4262–4266 (1997).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Santoro, S. W. & Joyce, G. F. Mechanism and utility of an RNA-cleaving DNA enzyme. Biochemistry 37, 13330–13342 (1998).

    CAS  PubMed  Google Scholar 

  72. Santiago, F. S. et al. New DNA enzyme targeting Erg-1 mRNA inhibits vascular smooth muscle proliferation and regrowth after injury. Nature Med. 5, 1264–1269 (1999).

    CAS  PubMed  Google Scholar 

  73. Santiago, F. S. & Khachigian, L. M. Nucleic acid based strategies as potential therapeutic tools: mechanistic considerations and implications to restenosis. J. Mol. Med. 79, 695–706 (2001).

    CAS  PubMed  Google Scholar 

  74. Li, Y. & Breaker, R. R. Phosphorylating DNA with DNA. Proc. Natl Acad. Sci. USA 96, 2746–2751 (1999).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang, W., Billen, L. P. & Li, Y. Sequence diversity, metal specificity, and catalytic proficiency of metal-dependent phosphorylating DNA enzymes. Chem. Biol. 9, 507–517 (2002).

    CAS  PubMed  Google Scholar 

  76. Sreedhara, A., Li, Y. F. & Breaker, R. R. Ligating DNA with DNA. J. Am. Chem. Soc. 126, 3454–3460 (2004).

    CAS  PubMed  Google Scholar 

  77. Uhlenbeck, O. C. Keeping RNA happy. RNA 1, 4–6 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Jiang, F., Kumar, R. A., Jones, R. A. & Patel, D. J. Structural basis of RNA folding and recognition in an AMP-RNA aptamer complex. Nature 382, 183–186 (1996).

    ADS  CAS  PubMed  Google Scholar 

  79. Soukup, G. A. & Breaker, R. R. Relationship between internucleotide linkage geometry and the stability of RNA. RNA 5, 1308–1325 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Tang, J. & Breaker, R. R. Rational design of allosteric ribozymes. Chem. Biol. 4, 453–459 (1997).

    CAS  PubMed  Google Scholar 

  81. Breaker, R. R. Engineered allosteric ribozymes as biosensor components. Curr. Opin. Biotechnol. 13, 31–39 (2002).

    CAS  PubMed  Google Scholar 

  82. Silverman, S. K. Rube Goldberg goes (ribo)nuclear? Molecular switches and sensors made from RNA. RNA 9, 377–383 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Seetharaman, S., Zivarts, M., Sudarsan, N. & Breaker, R. R. Immobilized switches for the analysis of complex chemical and biological mixtures. Nature Biotechnol. 19, 336–341 (2001).

    CAS  Google Scholar 

  84. Hesselberth, J. R., Robertson, M. P., Knudsen, S. M. & Ellington, A. D. Simultaneous detection of diverse analytes with an aptazyme ligase array. Anal. Biochem. 312, 106–112 (2003).

    CAS  PubMed  Google Scholar 

  85. Vaish, N. K. et al. Zeptomole detection of a viral nucleic acid using a target-activated ribozymes. RNA 9, 1058–1072 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kossen, K. et al. High-throughput ribozyme-based assays for detection of viral nucleic acids. Chem. Biol. 11, 807–815 (2004).

    CAS  PubMed  Google Scholar 

  87. Srinivasan, J. et al. ADP-specific sensors enable universal assay of protein kinase assay. Chem. Biol. 11, 499–508 (2004).

    CAS  PubMed  Google Scholar 

  88. Ferguson, A. et al. A novel strategy for selection of allosteric ribozymes yields RiboReporter sensors for caffeine and aspartame. Nucleic Acids Res. 32, 1756–1766 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Najafi-Shoushtari, S. H., Mayer, G. & Famulok, M. Sensing complex regulatory networks by conformationally controlled hairpin ribozymes. Nucleic Acids Res. 32, 3212–3219 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Hartig, J. S. et al. Protein-dependent ribozymes report molecular interactions in real time. Nature Biotechnol. 20, 717–722 (2002).

    CAS  Google Scholar 

  91. Mandal, M. & Breaker, R. R. Gene regulation by riboswitches. Nature Rev. Mol. Cell Biol. 5, 451–463 (2004).

    CAS  Google Scholar 

  92. Barrick, J. E. et al. New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. Proc. Natl Acad. Sci. USA 101, 6421–6426 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nahvi, A. et al. Genetic control by a metabolite binding mRNA. Chem. Biol. 9, 1043–1049 (2002).

    CAS  PubMed  Google Scholar 

  94. Winkler, W., Nahvi, A. & Breaker, R. R. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419, 952–956 (2002).

    ADS  CAS  PubMed  Google Scholar 

  95. Mandal, M., Boese, B., Barrick, J. E., Winkler, W. C. & Breaker, R. R. Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 113, 577–586 (2003).

    CAS  PubMed  Google Scholar 

  96. Mandal, M. & Breaker, R. R. Adenine riboswitches and gene activation by disruption of a transcription terminator. Nature Struct. Mol. Biol. 11, 29–35 (2004).

    CAS  Google Scholar 

  97. Johansen, L. E., Nygaard, P., Lassen, C., Agerso, Y. & Saxild, H. H. Definition of a second Bacillus subtilis pur regulon comprising the pur and xpt-pbuX operons plus pbuG, nupG (yxjA) and pbuE (ydhL). J. Bacteriol. 185, 5200–5209 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Werstuck, G. & Green, M. R. Controlling gene expression in living cells through small molecule-RNA interactions. Science 282, 296–298 (1998).

    ADS  CAS  PubMed  Google Scholar 

  99. Grate, D. & Wilson, C. Inducible regulation of the S. cerevisiae cell cycle mediated by an RNA aptamer-ligand complex. Bioorg. Med. Chem. 9, 2565–2570 (2001).

    CAS  PubMed  Google Scholar 

  100. Harvey, I., Garneau, P. & Pelletier, J. Inhibition of translation by RNA-small molecule interactions. RNA 8, 452–463 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Suess, B. et al. Conditional gene expression by controlling translation with tetracycline-binding aptamers. Nucleic Acids Res. 31, 1853–1858 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Hanson, S., Berthelot, K., Fink, B., McCarthy, J. E. G. & Suess, B. Tetracycline-aptamer-mediated translational regulation in yeast. Mol. Microbiol. 49, 1627–1637 (2003).

    CAS  PubMed  Google Scholar 

  103. Suess, B., Fink, B., Berens, C., Stenz, R. & Hillen, W. A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. Nucleic Acids Res. 32, 1610–1614 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Sudarsan, N., Barrick, J. E. & Breaker, R. R. Metabolite-binding RNA domains are present in the genes of eukaryotes. RNA 9, 644–647 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Sudarsan, N., Wickiser, J. K., Nakamura, S., Ebert, M. S. & Breaker, R. R. An mRNA structure in bacteria that controls gene expression by binding lysine. Genes Dev. 17, 2688–2697 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Winkler, W. C., Nahvi, A., Roth, A., Collins, J. A. & Breaker, R. R. Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428, 281–286 (2004).

    ADS  CAS  PubMed  Google Scholar 

  107. Kawasaki, H. & Taira, K. Identification of genes by hybrid ribozymes that couple cleavage activity with the unwinding activity of an endogenous RNA helicase. EMBO Rep. 3, 443–450 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Rhoades, K. & Wong-Staal, F. Inverse Genomics as a powerful tool to identify novel targets for the treatment of neurodegenerative diseases. Mech. Age. Dev. 124, 125–132 (2003).

    CAS  Google Scholar 

  109. Gruenert, D. C. et al. Sequence-specific modification of genomic DNA by small DNA fragments. J. Clin. Invest. 112, 637–641 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Walther, W. & Stein, U. Viral vectors for gene transfer: a review of their use in the treatment of human diseases. Drugs 60, 249–271 (2000).

    CAS  PubMed  Google Scholar 

  111. Kuan, J. Y. & Glazer, P. M. Targeted gene modification using triplex-forming oligonucleotides. Methods Mol. Biol. 262, 173–194 (2004).

    CAS  PubMed  Google Scholar 

  112. Long, M. B., Jones, J. P., Sullenger, B. A. & Byun, J. Ribozyme-mediated revision of RNA and DNA. J. Clin. Invest. 112, 312–318 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Garcia-Blanco, M. A., Baraniak, A. P. & Lasda, E. L. Alternative splicing in disease and therapy. Nature Biotechnol. 22, 535–546 (2004).

    CAS  Google Scholar 

  114. Gusarov, I. & Nudler, E. The mechanism of intrinsic transcription termination. Mol. Cell 3, 495–504 (1999).

    CAS  PubMed  Google Scholar 

  115. Yarnell, W. S. & Roberts, J. W. Mechanism of intrinsic transcription termination and antitermination. Science 284, 611–615 (1999).

    ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Nucleic acids research in the Breaker laboratory is supported by the David and Lucile Packard Foundation, NIH and NSF.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

R. Breaker is a cofounder of Archemix, which holds intellectual property in RiboReporter and aptamer technologies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breaker, R. Natural and engineered nucleic acids as tools to explore biology. Nature 432, 838–845 (2004). https://doi.org/10.1038/nature03195

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03195

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing