Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A candidate NAD+ transporter in an intracellular bacterial symbiont related to Chlamydiae

Abstract

Bacteria living within eukaryotic cells can be essential for the survival or reproduction of the host1,2 but in other cases are among the most successful pathogens3,4. Environmental Chlamydiae, including strain UWE25, thrive as obligate intracellular symbionts within protozoa; are recently discovered relatives of major bacterial pathogens of humans; and also infect human cells4,5,6,7. Genome analysis of UWE25 predicted that this symbiont is unable to synthesize the universal electron carrier nicotinamide adenine dinucleotide (NAD+)7. Compensation of limited biosynthetic capacity in intracellular bacteria is usually achieved by import of primary metabolites8,9,10,11. Here, we report the identification of a candidate transporter protein from UWE25 that is highly specific for import of NAD+ when synthesized heterologously in Escherichia coli. The discovery of this candidate NAD+/ADP exchanger demonstrates that intact NAD+ molecules can be transported through cytoplasmic membranes. This protein acts together with a newly discovered nucleotide transporter and an ATP/ADP translocase12, and allows UWE25 to exploit its host cell by means of a sophisticated metabolic parasitism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of metabolites on ADP or NAD+ uptake by NTT4 and substrate saturation analysis.
Figure 2: Back exchange properties of NTT4.
Figure 3: Transcriptional analysis of ntt1 (top) ntt2 (middle) and ntt4 (bottom) of strain UWE25 during multiplication within Acanthamoeba.
Figure 4: Model for metabolic interactions between UWE25 and its amoeba host.

Similar content being viewed by others

References

  1. Baumann, P. et al. Genetics, physiology, and evolutionary relationships of the genus Buchnera: intracellular symbionts of aphids. Annu. Rev. Microbiol. 49, 55–94 (1995)

    Article  CAS  Google Scholar 

  2. Charlat, S., Hurst, G. D. & Mercot, H. Evolutionary consequences of Wolbachia infections. Trends Genet. 19, 217–223 (2003)

    Article  CAS  Google Scholar 

  3. Cossart, P. & Sansonetti, P. J. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304, 242–248 (2004)

    Article  CAS  Google Scholar 

  4. Mahoney, J. B., Coombes, B. K. & Chernesky, M. A. in Manual of Clinical Microbiology (ed. Murray, P. R.) 991–1004 (ASM, Washington DC, 2003)

    Google Scholar 

  5. Fritsche, T. R., Horn, M., Wagner, M., Herwig, K.-H. & Schleifer, K.-H. Phylogenetic diversity among geographically dispersed Chlamydiales endosymbionts recovered from clinical and environmental isolates of Acanthamoeba spp. Appl. Environ. Microbiol. 66, 2613–2619 (2000)

    Article  CAS  Google Scholar 

  6. Greub, G., Mege, J.-L. & Raoult, D. Parachlamydia acanthamoeba enters and multiplies within human macrophages and induces their apoptosis. Infect. Immun. 71, 5979–5985 (2003)

    Article  CAS  Google Scholar 

  7. Horn, M. et al. Illuminating the evolutionary history of chlamydiae. Science 304, 728–730 (2004)

    Article  CAS  Google Scholar 

  8. Moulder, J. M. The Biochemistry of Intracellular Parasitism (Univ. Chicago Press, Chicago, Illinois, 1962)

    Google Scholar 

  9. Winkler, H. H. Rickettsial permeability: an ADP-ATP transport system. J. Biol. Chem. 251, 389–396 (1976)

    CAS  PubMed  Google Scholar 

  10. Hatch, T. P., Al-Hossainy, E. & Silverman, J. A. Adenine nucleotide and lysine transport in Chlamydia psittaci. J. Bacteriol. 150, 662–670 (1982)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Atkinson, W. H. & Winkler, H. H. Permeability of Rickettsia prowazekii to NAD. J. Bacteriol. 171, 761–766 (1989)

    Article  CAS  Google Scholar 

  12. Schmitz-Esser, S. et al. ATP/ADP translocases: a common feature of obligate intracellular amoebal symbionts related to chlamydia and rickettsia. J. Bacteriol. 186, 683–691 (2004)

    Article  CAS  Google Scholar 

  13. Winkler, H. H. & Neuhaus, H. E. Non-mitochondrial ATP transport. Trends Biochem. Sci. 24, 64–68 (1999)

    Article  CAS  Google Scholar 

  14. Tjaden, J. et al. Two nucleotide transport proteins in Chlamydia trachomatis, one for net nucleoside triphosphate uptake and the other for the transport of energy. J. Bacteriol. 181, 1196–1202 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Krause, D. C., Winkler, H. H. & Wood, D. O. Cloning and expression of the Rickettsia prowazekii ADP/ATP translocator in Escherichia coli. Proc. Natl Acad. Sci. USA 82, 3015–3019 (1985)

    Article  CAS  Google Scholar 

  16. Tjaden, J., Schwöppe, C., Möhlmann, T. & Neuhaus, H. E. Expression of the plastidic ATP/ADP transporter gene in Escherichia coli leads to a functional adenine nucleotide transport system in the bacterial cytoplasmic membrane. J. Biol. Chem. 273, 9630–9636 (1998)

    Article  CAS  Google Scholar 

  17. Möhlmann, T. et al. Occurrence of two plastidic ATP/ADP transporters in Arabidopsis thaliana L. Molecular characterisation and comparative structural analysis of similar ATP/ADP translocators from plastids and Rickettsia prowazekii. Eur. J. Biochem. 252, 353–359 (1998)

    Article  Google Scholar 

  18. Linka, N. et al. Phylogenetic relationship of non-mitochondrial nucleotide transport proteins in bacteria and eukaryotes. Gene 306, 27–35 (2003)

    Article  CAS  Google Scholar 

  19. Trentmann, O., Decker, C., Winkler, H. H. & Neuhaus, H. E. Charged amino-acid residues in transmembrane domains of the plastidic ATP/ADP transporter from Arabidopsis are important for transport efficiency, substrate specificity, and counter exchange properties. Eur. J. Biochem. 267, 4098–4105 (2000)

    Article  CAS  Google Scholar 

  20. Zhang, Q., Piston, D. W. & Goodman, R. H. Regulation of corepressor function by nuclear NADH. Science 295, 1895–1897 (2002)

    CAS  PubMed  Google Scholar 

  21. Coffe, V., Carbajal, R. C. & Salceda, R. Glycogen metabolism in the rat retina. J. Neurobiol. 88, 885–890 (2004)

    CAS  Google Scholar 

  22. Saier, M. H. A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol. Mol. Biol. Rev. 64, 345–411 (2000)

    Article  Google Scholar 

  23. Hofmann, K. & Stoffel, W. TMbase—A database of membrane spanning protein segments. Biol. Chem. 374, 166–172 (1993)

    Google Scholar 

  24. Thompson, J. D., Gibson, D. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882 (1997)

    Article  CAS  Google Scholar 

  25. Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004)

    Article  CAS  Google Scholar 

  26. Gautom, R. K. & Fritsche, T. R. Transmissibility of bacterial endosymbionts between isolates of Acanthamoeba spp. J. Euk. Microbiol. 42, 452–456 (1995)

    Article  CAS  Google Scholar 

  27. Mangold, H. K. in Dünnschicht-Chromatographie. Ein Laboratoriumshandbuch (ed. Stahl, E.) 749–769 (Springer, Heidelberg, 1967)

    Google Scholar 

Download references

Acknowledgements

Work in the laboratory of H.E.N. was supported by the DFG and the local research centre ‘Neue Wirkstoffe’, funded by the Federal State Rheinland-Pfalz. Work in the laboratory of M.W. was supported by the Austrian Science Fund (FWF) and by the Austrian Federal Ministry for Education, Science and Culture in the context of the GEN-AU project ‘Environmental Chlamydia Proteomics’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ekkehard Neuhaus.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Data

This file contains Supplementary Table 1 (proteins with homology to the NAD+/ADP transporter NTT4 of UWE25 in the public databases EMBL/GenBank/DDBJ), Supplementary Figure 1 (amino-acid sequence alignment of various NTT-type proteins from intracellular bacteria and plants), Supplementary Figure 2 (Nucleotide transport catalyzed by NTT2 and NTT4), and Supplementary Figure 3 (Phylogenetic relationships of nucleotide transport proteins). (DOC 113 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haferkamp, I., Schmitz-Esser, S., Linka, N. et al. A candidate NAD+ transporter in an intracellular bacterial symbiont related to Chlamydiae. Nature 432, 622–625 (2004). https://doi.org/10.1038/nature03131

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03131

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing