Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human DNA ligase I completely encircles and partially unwinds nicked DNA

Abstract

The end-joining reaction catalysed by DNA ligases is required by all organisms and serves as the ultimate step of DNA replication, repair and recombination processes. One of three well characterized mammalian DNA ligases, DNA ligase I, joins Okazaki fragments during DNA replication. Here we report the crystal structure of human DNA ligase I (residues 233 to 919) in complex with a nicked, 5′ adenylated DNA intermediate. The structure shows that the enzyme redirects the path of the double helix to expose the nick termini for the strand-joining reaction. It also reveals a unique feature of mammalian ligases: a DNA-binding domain that allows ligase I to encircle its DNA substrate, stabilizes the DNA in a distorted structure, and positions the catalytic core on the nick. Similarities in the toroidal shape and dimensions of DNA ligase I and the proliferating cell nuclear antigen sliding clamp are suggestive of an extensive protein–protein interface that may coordinate the joining of Okazaki fragments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Function and organization of Lig1.
Figure 2: Lig1 intimately engages its DNA substrate.
Figure 3: Lig1 engages the minor groove of DNA.
Figure 4: Ligation fidelity.
Figure 5: Two active conformations of the OBD.

Similar content being viewed by others

References

  1. Lehman, I. R. DNA ligase: structure, mechanism, and function. Science 186, 790–797 (1974)

    Article  CAS  ADS  Google Scholar 

  2. Shuman, S. & Schwer, B. RNA capping enzyme and DNA ligase: a superfamily of covalent nucleotidyl transferases. Mol. Microbiol. 17, 405–410 (1995)

    Article  CAS  Google Scholar 

  3. Kodama, K., Barnes, D. E. & Lindahl, T. In vitro mutagenesis and functional expression in Escherichia coli of a cDNA encoding the catalytic domain of human DNA ligase I. Nucleic Acids Res. 19, 6093–6099 (1991)

    Article  CAS  Google Scholar 

  4. Luo, J. & Barany, F. Identification of essential residues in Thermus thermophilus DNA ligase. Nucleic Acids Res. 24, 3079–3085 (1996)

    Article  CAS  Google Scholar 

  5. Sriskanda, V. & Shuman, S. Mutational analysis of Chlorella virus DNA ligase: catalytic roles of domain I and motif VI. Nucleic Acids Res. 26, 4618–4625 (1998)

    Article  CAS  Google Scholar 

  6. Mackey, Z. B. et al. DNA ligase III is recruited to DNA strand breaks by a zinc finger motif homologous to that of poly(ADP-ribose) polymerase. Identification of two functionally distinct DNA binding regions within DNA ligase III. J. Biol. Chem. 274, 21679–21687 (1999)

    Article  CAS  Google Scholar 

  7. Sriskanda, V. & Shuman, S. Role of nucleotidyltransferase motifs I, III and IV in the catalysis of phosphodiester bond formation by Chlorella virus DNA ligase. Nucleic Acids Res. 30, 903–911 (2002)

    Article  CAS  Google Scholar 

  8. Subramanya, H. S., Doherty, A. J., Ashford, S. R. & Wigley, D. B. Crystal structure of an ATP-dependent DNA ligase from bacteriophage T7. Cell 85, 607–615 (1996)

    Article  CAS  Google Scholar 

  9. Singleton, M. R., Hakansson, K., Timson, D. J. & Wigley, D. B. Structure of the adenylation domain of an NAD+-dependent DNA ligase. Struct. Fold. Des. 7, 35–42 (1999)

    Article  CAS  Google Scholar 

  10. Lee, J. Y. et al. Crystal structure of NAD(+ )-dependent DNA ligase: modular architecture and functional implications. EMBO J. 19, 1119–1129 (2000)

    Article  CAS  Google Scholar 

  11. Odell, M., Sriskanda, V., Shuman, S. & Nikolov, D. B. Crystal structure of eukaryotic DNA ligase-adenylate illuminates the mechanism of nick sensing and strand joining. Mol. Cell 6, 1183–1193 (2000)

    Article  CAS  Google Scholar 

  12. Doherty, A. J. & Suh, S. W. Structural and mechanistic conservation in DNA ligases. Nucleic Acids Res. 28, 4051–4058 (2000)

    Article  CAS  Google Scholar 

  13. Timson, D. J., Singleton, M. R. & Wigley, D. B. DNA ligases in the repair and replication of DNA. Mutat. Res. 460, 301–318 (2000)

    Article  CAS  Google Scholar 

  14. Martin, I. V. & MacNeill, S. A. ATP-dependent DNA ligases. Genome Biol. 3, Reviews 3005 (2002)

  15. Tomkinson, A. E., Tappe, N. J. & Friedberg, E. C. DNA ligase I from Saccharomyces cerevisiae: physical and biochemical characterization of the CDC9 gene product. Biochemistry 31, 11762–11771 (1992)

    Article  CAS  Google Scholar 

  16. Sriskanda, V., Schwer, B., Ho, C. K. & Shuman, S. Mutational analysis of Escherichia coli DNA ligase identifies amino acids required for nick-ligation in vitro and for in vivo complementation of the growth of yeast cells deleted for CDC9 and LIG4. Nucleic Acids Res. 27, 3953–3963 (1999)

    Article  CAS  Google Scholar 

  17. Grawunder, U., Zimmer, D. & Leiber, M. R. DNA ligase IV binds to XRCC4 via a motif located between rather than within its BRCT domains. Curr. Biol. 8, 873–876 (1998)

    Article  CAS  Google Scholar 

  18. Jeon, H. J. et al. Mutational analyses of the thermostable NAD(+ )-dependent DNA ligase from Thermus filiformis. FEMS Microbiol. Lett. 237, 111–118 (2004)

    Article  CAS  Google Scholar 

  19. Sriskanda, V. & Shuman, S. Conserved residues in domain Ia are required for the reaction of Escherichia coli DNA ligase with NAD+. J. Biol. Chem. 277, 9695–9700 (2002)

    Article  CAS  Google Scholar 

  20. Gajiwala, K. S. & Pinko, C. Structural rearrangement accompanying NAD(+ ) synthesis within a bacterial DNA ligase crystal. Structure 12, 1449–1459 (2004)

    Article  CAS  Google Scholar 

  21. Hakansson, K., Doherty, A. J., Shuman, S. & Wigley, D. B. X-ray crystallography reveals a large conformational change during guanyl transfer by mRNA capping enzymes. Cell 89, 545–553 (1997)

    Article  CAS  Google Scholar 

  22. Barnes, D. E., Tomkinson, A. E., Lehmann, A. R., Webster, A. D. & Lindahl, T. Mutations in the DNA ligase I gene of an individual with immunodeficiencies and cellular hypersensitivity to DNA-damaging agents. Cell 69, 495–503 (1992)

    Article  CAS  Google Scholar 

  23. Prigent, C., Satoh, M. S., Daly, G., Barnes, D. E. & Lindahl, T. Aberrant DNA repair and DNA replication due to an inherited enzymatic defect in human DNA ligase I. Mol. Cell. Biol. 14, 310–317 (1994)

    Article  CAS  Google Scholar 

  24. Harrison, C., Ketchen, A. M., Redhead, N. J., O'Sullivan, M. J. & Melton, D. W. Replication failure, genome instability, and increased cancer susceptibility in mice with a point mutation in the DNA ligase I gene. Cancer Res. 62, 4065–4074 (2002)

    CAS  PubMed  Google Scholar 

  25. Robinson, H. et al. The hyperthermophile chromosomal protein Sac7d sharply kinks DNA. Nature 392, 202–205 (1998)

    Article  CAS  ADS  Google Scholar 

  26. Odell, M. & Shuman, S. Footprinting of Chlorella virus DNA ligase bound at a nick in duplex DNA. J. Biol. Chem. 274, 14032–14039 (1999)

    Article  CAS  Google Scholar 

  27. Doherty, A. J. & Dafforn, T. R. Nick recognition by DNA ligases. J. Mol. Biol. 296, 43–56 (2000)

    Article  CAS  Google Scholar 

  28. Sekiguchi, J. & Shuman, S. Ligation of RNA-containing duplexes by vaccinia DNA ligase. Biochemistry 36, 9073–9079 (1997)

    Article  CAS  Google Scholar 

  29. Rumbaugh, J. A., Murante, R. S., Shi, S. & Bambara, R. A. Creation and removal of embedded ribonucleotides in chromosomal DNA during mammalian Okazaki fragment processing. J. Biol. Chem. 272, 22591–22599 (1997)

    Article  CAS  Google Scholar 

  30. Sriskanda, V. & Shuman, S. Specificity and fidelity of strand joining by Chlorella virus DNA ligase. Nucleic Acids Res. 26, 3536–3541 (1998)

    Article  CAS  Google Scholar 

  31. Shuman, S. Vaccinia virus DNA ligase: specificity, fidelity, and inhibition. Biochemistry 34, 16138–16147 (1995)

    Article  CAS  Google Scholar 

  32. Bhagwat, A. S., Sanderson, R. J. & Lindahl, T. Delayed DNA joining at 3′ mismatches by human DNA ligases. Nucleic Acids Res. 27, 4028–4033 (1999)

    Article  CAS  Google Scholar 

  33. Liu, P., Burdzy, A. & Sowers, L. C. DNA ligases ensure fidelity by interrogating minor groove contacts. Nucleic Acids Res. 32, 4503–4511 (2004)

    Article  CAS  Google Scholar 

  34. Corbett, K. D. & Berger, J. M. Structure, molecular mechanisms, and evolutionary relationships in DNA topoisomerases. Annu. Rev. Biophys. Biomol. Struct. 33, 95–118 (2004)

    Article  CAS  Google Scholar 

  35. Montecucco, A. & Ciarrocchi, G. AMP-dependent DNA relaxation catalyzed by DNA ligase occurs by a nicking-closing mechanism. Nucleic Acids Res. 16, 7369–7381 (1988)

    Article  CAS  Google Scholar 

  36. Doherty, A. J. & Wigley, D. B. Functional domains of an ATP-dependent DNA ligase. J. Mol. Biol. 285, 63–71 (1999)

    Article  CAS  Google Scholar 

  37. Warbrick, E. PCNA binding through a conserved motif. Bioessays 20, 195–199 (1998)

    Article  CAS  Google Scholar 

  38. Levin, D. S., McKenna, A. E., Motycka, T. A., Matsumoto, Y. & Tomkinson, A. E. Interaction between PCNA and DNA ligase I is critical for joining of Okazaki fragments and long-patch base-excision repair. Curr. Biol. 10, 919–922 (2000)

    Article  CAS  Google Scholar 

  39. Levin, D. S., Bai, W., Yao, N., O'Donnell, M. & Tomkinson, A. E. An interaction between DNA ligase I and proliferating cell nuclear antigen: implications for Okazaki fragment synthesis and joining. Proc. Natl Acad. Sci. USA 94, 12863–12868 (1997)

    Article  CAS  ADS  Google Scholar 

  40. Dionne, I., Nookala, R. K., Jackson, S. P., Doherty, A. J. & Bell, S. D. A heterotrimeric PCNA in the hyperthermophilic archaeon Sulfolobus solfataricus. Mol. Cell 11, 275–282 (2003)

    Article  CAS  Google Scholar 

  41. Teraoka, H. et al. Expression of active human DNA ligase I in Escherichia coli cells that harbor a full-length DNA ligase I cDNA construct. J. Biol. Chem. 268, 24156–24162 (1993)

    CAS  PubMed  Google Scholar 

  42. Van Duyne, G. D., Standaert, R. F., Karplus, P. A., Schreiber, S. L. & Clardy, J. Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J. Mol. Biol. 229, 105–124 (1993)

    Article  CAS  Google Scholar 

  43. Otwinowski, Z. & Minor, W. in Methods Enzymology (eds Carter, C. W. & Sweet, R. M.) 307–326 (Academic, New York, 1997)

    Google Scholar 

  44. Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr. 55, 849–861 (1999)

    Article  CAS  Google Scholar 

  45. La Fortelle, E. D. & Bricogne, G. in Methods Enzymology (eds Sweet, R. M. & Carter, C. W.) 472–494 (Academic, New York, 1997)

    Google Scholar 

  46. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  47. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998)

    Article  CAS  Google Scholar 

  48. Murshudov, G. N. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997)

    Article  CAS  Google Scholar 

  49. Montecucco, A. et al. The N-terminal domain of human DNA ligase I contains the nuclear localization signal and directs the enzyme to sites of DNA replication. EMBO J. 14, 5379–5386 (1995)

    Article  CAS  Google Scholar 

  50. Dimitriadis, E. K. et al. Thermodynamics of human DNA ligase I trimerization and association with DNA polymerase β. J. Biol. Chem. 273, 20540–20550 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

X-ray data were measured at beamlines X-12C and X-25 of the National Synchrotron Light Source (Upton, New York), and the SIBYLS beamline 12.3.1 of the Advanced Light Source (Berkeley, California), which are supported by the Offices of Biological and Environmental Research and of Basic Energy Sciences of the US Department of Energy, and the National Center for Research Resources of the National Institutes of Health. This work was supported by the Structural Cell Biology of DNA Repair Program Grant from the National Cancer Institute, and research grants from the National Institute of General Medical Sciences awarded to T.E. and A.E.T. J.M.P. and P.J.O. are supported by NRSA postdoctoral fellowships from the National Institutes of Health. T.E. is the Hsien Wu and Daisy Yen Wu Professor at Harvard Medical School.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Ellenberger.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Tables, Figures and Methods

This file contains supplemantary tables 1-3, figures 1–4 and their legends and supplementary methods. (PDF 541 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pascal, J., O'Brien, P., Tomkinson, A. et al. Human DNA ligase I completely encircles and partially unwinds nicked DNA. Nature 432, 473–478 (2004). https://doi.org/10.1038/nature03082

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03082

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing