Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Intrinsic tumour suppression

Abstract

Mutations that drive uncontrolled cell-cycle progression are requisite events in tumorigenesis. But evolution has installed in the proliferative programmes of mammalian cells a variety of innate tumour-suppressive mechanisms that trigger apoptosis or senescence, should proliferation become aberrant. These contingent processes rely on a series of sensors and transducers that act in a coordinated network to target the machinery responsible for apoptosis and cell-cycle arrest at different points. Although oncogenic mutations that disable such networks can have profound and varied effects on tumour evolution, they may leave intact latent tumour-suppressive potential that can be harnessed therapeutically.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Example of an obligate combinatorial signalling network.
Figure 2: Oncogenic signalling targets many levels of the apoptotic machinery.
Figure 3: Crossing the apoptotic threshold.
Figure 4: The ARF–p53 circuit in tumour development and therapy.

Similar content being viewed by others

References

  1. Evan, G. I. et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 69, 119–128 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Evan, G. I. & Vousden, K. H. Proliferation, cell cycle and apoptosis in cancer. Nature 411, 342–348 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Fridman, J. S. & Lowe, S. W. Control of apoptosis by p53. Oncogene 22, 9030–9040 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Danial, N. N. & Korsmeyer, S. J. Cell death: critical control points. Cell 116, 205–219 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Cory, S., Huang, D. C. & Adams, J. M. The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22, 8590–8607 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Green, D. R. & Kroemer, G. The pathophysiology of mitochondrial cell death. Science 305, 626–629 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Peter, M. E. & Krammer, P. H. The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ. 10, 26–35 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Wilkinson, J. C., Cepero, E., Boise, L. H. & Duckett, C. S. Upstream regulatory role for XIAP in receptor-mediated apoptosis. Mol. Cell. Biol. 24, 7003–7014 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Scaffidi, C. et al. Two CD95 (APO-1/Fas) signalling pathways. EMBO J. 17, 1675–1687 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Mihara, M. et al. p53 has a direct apoptogenic role at the mitochondria. Mol. Cell 11, 577–590 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. White, E. Regulation of the cell cycle and apoptosis by the oncogenes of adenovirus. Oncogene 20, 7836–7846 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Schmitt, C. A., McCurrach, M. E., de Stanchina, E., Wallace-Brodeur, R. R. & Lowe, S. W. INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev. 13, 2670–2677 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Symonds, H. et al. p53-dependent apoptosis suppresses tumour growth and progression in vivo. Cell 78, 703–711 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Pierce, A. M. et al. Increased E2F1 activity induces skin tumours in mice heterozygous and nullizygous for p53. Proc. Natl Acad. Sci. USA 95, 8858–8863 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yin, C., Knudson, C. M., Korsmeyer, S. J. & Van Dyke, T. Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature 385, 637–640 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Hemann, M. T. et al. Suppression of tumorigenesis by the p53 target PUMA. Proc. Natl Acad. Sci. USA 101, 9333–9338 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schmitt, C. A. et al. Dissecting p53 tumour suppressor functions in vivo. Cancer Cell 1, 289–298 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Pelengaris, S., Khan, M. & Evan, G. I. Suppression of Myc-induced apoptosis in beta cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell 109, 321–334 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Lowe, S. W. & Sherr, C. J. Tumour suppression by Ink4a-Arf: progress and puzzles. Curr. Opin. Genet. Dev. 13, 77–83 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Sherr, C. J. The INK4a/ARF network in tumour suppression. Nature Rev. Mol. Cell Biol. 2, 731–737 (2001).

    Article  ADS  CAS  Google Scholar 

  22. Zindy, F. et al. Myc signalling via the ARF tumour suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev. 12, 2424–2433 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. de Stanchina, E. et al. E1A signalling to p53 involves the p19(ARF) tumour suppressor. Genes Dev. 12, 2434–2442 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kamijo, T. et al. Tumour suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91, 649–659 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Schmitt, C. A. et al. A senescence programme controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109, 335–346 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Jacobs, J. J. et al. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev. 13, 2678–2690 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Eischen, C. M., Weber, J. D., Roussel, M. F., Sherr, C. J. & Cleveland, J. L. Disruption of the ARF–Mdm2–p53 tumour suppressor pathway in Myc-induced lymphomagenesis. Genes Dev. 13, 2658–2669 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Verschuren, E. W., Klefstrom, J., Evan, G. I. & Jones, N. The oncogenic potential of Kaposi's sarcoma-associated herpesvirus cyclin is exposed by p53 loss in vitro and in vivo. Cancer Cell 2, 229–241 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Tolbert, D., Lu, X., Yin, C., Tantama, M. & Van Dyke, T. p19(ARF) is dispensable for oncogenic stress-induced p53-mediated apoptosis and tumour suppression in vivo. Mol. Cell. Biol. 22, 370–377 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Khan, S. H., Moritsugu, J. & Wahl, G. M. Differential requirement for p19ARF in the p53-dependent arrest induced by DNA damage, microtubule disruption, and ribonucleotide depletion. Proc. Natl Acad. Sci. USA 97, 3266–3271 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rogoff, H. A. et al. Apoptosis associated with deregulated E2F activity is dependent on E2F1 and Atm/Nbs1/Chk2. Mol. Cell. Biol. 24, 2968–2977 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liao, M. J., Yin, C., Barlow, C., Wynshaw-Boris, A. & van Dyke, T. Atm is dispensable for p53 apoptosis and tumour suppression triggered by cell cycle dysfunction. Mol. Cell. Biol. 19, 3095–3102 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Conn, C. W., Lewellyn, A. L. & Maller, J. L. The DNA damage checkpoint in embryonic cell cycles is dependent on the DNA-to-cytoplasmic ratio. Dev. Cell 7, 275–281 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Flores, E. R. et al. p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 416, 560–564 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Urist, M. & Prives, C. p53 leans on its siblings. Cancer Cell 1, 311–313 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Yang, A., Kaghad, M., Caput, D. & McKeon, F. On the shoulders of giants: p63, p73 and the rise of p53. Trends Genet. 18, 90–95 (2002).

    Article  PubMed  Google Scholar 

  37. Senoo, M., Manis, J. P., Alt, F. W. & McKeon, F. p63 and p73 are not required for the development and p53-dependent apoptosis of T cells. Cancer Cell 6, 85–89 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Irwin, M. S. et al. Chemosensitivity linked to p73 function. Cancer Cell 3, 403–410 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Bergamaschi, D. et al. p53 polymorphism influences response in cancer chemotherapy via modulation of p73-dependent apoptosis. Cancer Cell 3, 387–402 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Gaiddon, C., Lokshin, M., Ahn, J., Zhang, T. & Prives, C. A subset of tumour-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol. Cell. Biol. 21, 1874–1887 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Perez, D. & White, E. E1A sensitizes cells to tumour necrosis factor alpha by downregulating c-FLIP S. J. Virol. 77, 2651–2662 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Klefstrom, J., Verschuren, E. W. & Evan, G. c-Myc augments the apoptotic activity of cytosolic death receptor signalling proteins by engaging the mitochondrial apoptotic pathway. J. Biol. Chem. 277, 43224–43232 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Croxton, R., Ma, Y., Song, L., Haura, E. B. & Cress, W. D. Direct repression of the Mcl-1 promoter by E2F1. Oncogene 21, 1359–1369 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Eischen, C. M. et al. Bcl-2 is an apoptotic target suppressed by both c-Myc and E2F-1. Oncogene 20, 6983–6993 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Egle, A., Harris, A. W., Bouillet, P. & Cory, S. Bim is a suppressor of Myc-induced mouse B cell leukemia. Proc. Natl Acad. Sci. USA 101, 6164–6169 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hershko, T. & Ginsberg, D. Up-regulation of Bcl-2 homology 3 (BH3)-only proteins by E2F1 mediates apoptosis. J. Biol. Chem. 279, 8627–8634 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Nahle, Z. et al. Direct coupling of the cell cycle and cell death machinery by E2F. Nature Cell Biol. 4, 859–864 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Sears, R., Ohtani, K. & Nevins, J. R. Identification of positively and negatively acting elements regulating expression of the E2F2 gene in response to cell growth signals. Mol. Cell. Biol. 17, 5227–5235 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Matsumura, I., Tanaka, H. & Kanakura, Y. E2F1 and c-Myc in cell growth and death. Cell Cycle 2, 333–338 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Leone, G. et al. Myc requires distinct E2F activities to induce S phase and apoptosis. Mol. Cell 8, 105–113 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Russell, J. L. et al. ARF differentially modulates apoptosis induced by E2F1 and Myc. Mol. Cell. Biol. 22, 1360–1368 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Baudino, T. A. et al. Myc-mediated proliferation and lymphomagenesis, but not apoptosis, are compromised by E2f1 loss. Mol. Cell 11, 905–914 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Conner, E. A. et al. Dual functions of E2F-1 in a transgenic mouse model of liver carcinogenesis. Oncogene 19, 5054–5062 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Leone, G., DeGregori, J., Sears, R., Jakoi, L. & Nevins, J. R. Myc and Ras collaborate in inducing accumulation of active cyclin E/Cdk2 and E2F. Nature 387, 422–426 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Dimri, G. P., Itahana, K., Acosta, M. & Campisi, J. Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14(ARF) tumour suppressor. Mol. Cell. Biol. 20, 273–285 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Damalas, A., Kahan, S., Shtutman, M., Ben-Ze'ev, A. & Oren, M. Deregulated beta-catenin induces a p53- and ARF-dependent growth arrest and cooperates with Ras in transformation. EMBO J. 20, 4912–4922 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Campisi, J. Cellular senescence as a tumour-suppressor mechanism. Trends Cell Biol. 11, S27–S31 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Shay, J. W. & Roninson, I. B. Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene 23, 2919–2933 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Pearson, M. et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406, 207–210 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Ferbeyre, G. et al. PML is induced by oncogenic ras and promotes premature senescence. Genes Dev. 14, 2015–2027 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Itahana, K. et al. Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1. Mol. Cell. Biol. 23, 389–401 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Narita, M. et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703–716 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Paramio, J. M. et al. The ink4a/arf tumour suppressors cooperate with p21cip1/waf in the processes of mouse epidermal differentiation, senescence, and carcinogenesis. J. Biol. Chem. 276, 44203–44211 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Elenbaas, B. et al. Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev. 15, 50–65 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Horner, S. M., DeFilippis, R. A., Manuelidis, L. & DiMaio, D. Repression of the human papillomavirus E6 gene initiates p53-dependent, telomerase-independent senescence and apoptosis in HeLa cervical carcinoma cells. J. Virol. 78, 4063–4073 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wu, X. & Levine, A. J. p53 and E2F-1 cooperate to mediate apoptosis. Proc. Natl Acad. Sci. USA 91, 3602–3606 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Benanti, J. A. & Galloway, D. A. Normal human fibroblasts are resistant to RAS-induced senescence. Mol. Cell. Biol. 24, 2842–2852 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tuveson, D. A. et al. Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell 5, 375–387 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Guerra, C. et al. Tumour induction by an endogenous K-ras oncogene is highly dependent on cellular context. Cancer Cell 4, 111–120 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Lin, A. W. & Lowe, S. W. Oncogenic ras activates the ARF-p53 pathway to suppress epithelial cell transformation. Proc. Natl Acad. Sci. USA 98, 5025–5030 (2001).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kelly-Spratt, K. S., Gurley, K. E., Yasui, Y. & Kemp, C. J. p19(Arf) suppresses growth, progression, and metastasis of Hras-driven carcinomas through p53-dependent and -independent pathways. PLoS Biol. 2, E242 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Pelengaris, S., Littlewood, T., Khan, M., Elia, G. & Evan, G. Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol. Cell 3, 565–577 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Raff, M. C. Social controls on cell survival and cell death. Nature 356, 397–400 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Askew, D., Ashmun, R., Simmons, B. & Cleveland, J. Constitutive c-myc expression in IL-3-dependent myeloid cell line suppresses cycle arrest and accelerates apoptosis. Oncogene 6, 1915–1922 (1991).

    CAS  PubMed  Google Scholar 

  76. Harrington, E. A., Bennett, M. R., Fanidi, A. & Evan, G. I. c-Myc-induced apoptosis in fibroblasts is inhibited by specific cytokines. EMBO J. 13, 3286–3295 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Grossmann, J. Molecular mechanisms of ‘detachment-induced apoptosis–Anoikis’. Apoptosis 7, 247–260 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Vivanco, I. & Sawyers, C. L. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nature Rev. Cancer 2, 489–501 (2002).

    Article  CAS  Google Scholar 

  79. Plas, D. R., Rathmell, J. C. & Thompson, C. B. Homeostatic control of lymphocyte survival: potential origins and implications. Nature Immunol. 3, 515–521 (2002).

    Article  CAS  Google Scholar 

  80. Grad, J. M., Zeng, X. R. & Boise, L. H. Regulation of Bcl-xL: a little bit of this and a little bit of STAT. Curr. Opin. Oncol. 12, 543–549 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. LeRoith, D. & Helman, L. The new kid on the block(ade) of the IGF-1 receptor. Cancer Cell 5, 201–202 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Christofori, G., Naik, P. & Hanahan, D. A second signal supplied by insulin-like growth factor II in oncogene-induced tumorigenesis. Nature 369, 414–418 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  83. Orsulic, S. et al. Induction of ovarian cancer by defined multiple genetic changes in a mouse model system. Cancer Cell 1, 53–62 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kauffmann-Zeh, A. et al. Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature 385, 544–548 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  85. Wendel, H. G. et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428, 332–337 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  86. Zindy, F. et al. Arf tumour suppressor promoter monitors latent oncogenic signals in vivo. Proc. Natl Acad. Sci. USA 100, 15930–15935 (2003).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Aslanian, A., Iaquinta, P. J., Verona, R. & Lees, J. A. Repression of the Arf tumour suppressor by E2F3 is required for normal cell cycle kinetics. Genes Dev. 18, 1413–1422 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jin, S. et al. CIAP1 and the serine protease HTRA2 are involved in a novel p53-dependent apoptosis pathway in mammals. Genes Dev. 17, 359–367 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zheng, T. S. et al. Deficiency in caspase-9 or caspase-3 induces compensatory caspase activation. Nature Med. 6, 1241–1247 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Harlin, H., Reffey, S. B., Duckett, C. S., Lindsten, T. & Thompson, C. B. Characterization of XIAP-deficient mice. Mol. Cell. Biol. 21, 3604–3608 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sage, J., Miller, A. L., Perez-Mancera, P. A., Wysocki, J. M. & Jacks, T. Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature 424, 223–228 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  92. Seoane, J., Le, H. V. & Massague, J. Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419, 729–734 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  93. Johnstone, R. W., Ruefli, A. A. & Lowe, S. W. Apoptosis: a link between cancer genetics and chemotherapy. Cell 108, 153–164 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Chin, L. et al. Essential role for oncogenic Ras in tumour maintenance. Nature 400, 468–472 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  95. Felsher, D. W. & Bishop, J. M. Reversible tumorigenesis by MYC in haematopoietic lineages. Mol. Cell 4, 199–207 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Gunther, E. J. et al. Impact of p53 loss on reversal and recurrence of conditional Wnt-induced tumorigenesis. Genes Dev. 17, 488–501 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Moody, S. E. et al. Conditional activation of Neu in the mammary epithelium of transgenic mice results in reversible pulmonary metastasis. Cancer Cell 2, 451–461 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Pakunlu, R. I., Cook, T. J. & Minko, T. Simultaneous modulation of multidrug resistance and antiapoptotic cellular defence by MDR1 and BCL-2 targeted antisense oligonucleotides enhances the anticancer efficacy of doxorubicin. Pharm. Res. 20, 351–359 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Bykov, V. J. & Wiman, K. G. Novel cancer therapy by reactivation of the p53 apoptosis pathway. Ann. Med. 35, 458–465 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Lowe and Evan laboratories for discussions, and M. Hemann, D. Burgess and M. McCurrach for critical readings of the manuscript. S. L. is supported by an NFCR-AACR research professorship and grants from the National Institutes of Health and the Leukemia and Lymphoma Society, E. C. is supported by a postdoctoral training fellowship from the National Cancer Institute, and G. E. is supported by grants from the NIH, the Juvenile Diabetes Foundation and the Brain Tumor Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott W. Lowe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lowe, S., Cepero, E. & Evan, G. Intrinsic tumour suppression. Nature 432, 307–315 (2004). https://doi.org/10.1038/nature03098

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03098

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing