Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system

An Editorial Expression of Concern to this article was published on 18 December 2023

15 February 2023 Editor’s Note: Readers are alerted that the reliability of data presented in this manuscript is currently in question. Appropriate editorial action will be taken once this matter is resolved.

This article has been updated

Abstract

Blood vessels and nerves are complex, branched structures that share a high degree of anatomical similarity. Guidance of vessels and nerves has to be exquisitely regulated to ensure proper wiring of both systems. Several regulators of axon guidance have been identified and some of these are also expressed in endothelial cells; however, the extent to which their guidance functions are conserved in the vascular system is still incompletely understood. We show here that the repulsive netrin receptor UNC5B is expressed by endothelial tip cells of the vascular system. Disruption of the Unc5b gene in mice, or of Unc5b or netrin-1a in zebrafish, leads to aberrant extension of endothelial tip cell filopodia, excessive vessel branching and abnormal navigation. Netrin-1 causes endothelial filopodial retraction, but only when UNC5B is present. Thus, UNC5B functions as a repulsive netrin receptor in endothelial cells controlling morphogenesis of the vascular system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Unc5b expression in the vascular system.
Figure 2: Increased capillary branching and tip-cell filipodia extension in Unc5b mouse and zebrafish mutant embryos.
Figure 3: Abnormal morphology of Unc5b mouse mutant arteries.
Figure 4: Netrin-1 reduces endothelial cell migration and filopodial extension in vitro.
Figure 5: Netrin-1 stimulates filopodial retraction of endothelial cells in vivo.
Figure 6: Netrin-1-induced filopodial retraction is lost in the absence of Unc5b.

Similar content being viewed by others

Change history

  • 15 February 2023

    Editor’s Note: Readers are alerted that the reliability of data presented in this manuscript is currently in question. Appropriate editorial action will be taken once this matter is resolved.

  • 18 December 2023

    An Editorial Expression of Concern to this paper has been published: https://doi.org/10.1038/s41586-023-06944-2

References

  1. Carmeliet, P. Blood vessels and nerves: common signals, pathways and diseases. Nature Rev. Genet. 4, 710–720 (2003)

    Article  CAS  PubMed  Google Scholar 

  2. Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161, 1163–1177 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ruhrberg, C. et al. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev. 16, 2684–2698 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dickson, B. J. Molecular mechanisms of axon guidance. Science 298, 1959–1964 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Kawasaki, T. et al. A requirement for neuropilin-1 in embryonic vessel formation. Development 126, 4895–4902 (1999)

    Article  CAS  PubMed  Google Scholar 

  6. Moyon, D., Pardanaud, L., Yuan, L., Breant, C. & Eichmann, A. Plasticity of endothelial cells during arterial-venous differentiation in the avian embryo. Development 128, 3359–3370 (2001)

    Article  CAS  PubMed  Google Scholar 

  7. Yuan, L. et al. Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 129, 4797–4806 (2002)

    Article  CAS  PubMed  Google Scholar 

  8. van der Zwaag, B. et al. PLEXIN-D1, a novel plexin family member, is expressed in vascular endothelium and the central nervous system during mouse embryogenesis. Dev. Dyn. 225, 336–343 (2002)

    Article  CAS  PubMed  Google Scholar 

  9. Gitler, A. D., Lu, M. M. & Epstein, J. A. PlexinD1 and semaphorin signaling are required in endothelial cells for cardiovascular development. Dev. Cell 7, 107–116 (2004)

    Article  CAS  PubMed  Google Scholar 

  10. Torres-Vazquez, J. et al. Semaphorin-plexin signaling guides patterning of the developing vasculature. Dev. Cell 7, 117–123 (2004)

    Article  CAS  PubMed  Google Scholar 

  11. Wang, H. U., Chen, Z. F. & Anderson, D. J. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93, 741–753 (1998)

    Article  CAS  PubMed  Google Scholar 

  12. Adams, R. H. et al. Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev. 13, 295–306 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gerety, S. S., Wang, H. U., Chen, Z. F. & Anderson, D. J. Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol. Cell 4, 403–414 (1999)

    Article  CAS  PubMed  Google Scholar 

  14. Park, K. W. et al. Robo4 is a vascular-specific receptor that inhibits endothelial migration. Dev. Biol. 261, 251–267 (2003)

    Article  CAS  PubMed  Google Scholar 

  15. Kennedy, T. E., Serafini, T., de la Torre, J. R. & Tessier-Lavigne, M. Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 78, 425–435 (1994)

    Article  CAS  PubMed  Google Scholar 

  16. Serafini, T. et al. The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 78, 409–424 (1994)

    Article  CAS  PubMed  Google Scholar 

  17. Cohen-Cory, S. The double life of netrin. Nature Neurosci. 5, 926–928 (2002)

    Article  CAS  PubMed  Google Scholar 

  18. Keino-Masu, K. et al. Deleted in Colorectal Cancer (DCC) encodes a netrin receptor. Cell 87, 175–185 (1996)

    Article  CAS  PubMed  Google Scholar 

  19. Hedgecock, E. M., Culotti, J. G. & Hall, D. H. The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron 4, 61–85 (1990)

    Article  CAS  PubMed  Google Scholar 

  20. Leung-Hagesteijn, C. et al. UNC-5, a transmembrane protein with immunoglobulin and thrombospondin type 1 domains, guides cell and pioneer axon migrations in C. elegans. Cell 71, 289–299 (1992)

    Article  CAS  PubMed  Google Scholar 

  21. Hamelin, M., Zhou, Y., Su, M. W., Scott, I. M. & Culotti, J. G. Expression of the UNC-5 guidance receptor in the touch neurons of C. elegans steers their axons dorsally. Nature 364, 327–330 (1993)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Leonardo, E. D. et al. Vertebrate homologues of C. elegans UNC-5 are candidate netrin receptors. Nature 386, 833–838 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Ackerman, S. L. et al. The mouse rostral cerebellar malformation gene encodes an UNC-5-like protein. Nature 386, 838–842 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Hong, K. et al. A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell 97, 927–941 (1999)

    Article  CAS  PubMed  Google Scholar 

  25. Fazeli, A. et al. Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene. Nature 386, 796–804 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Keleman, K. & Dickson, B. J. Short- and long-range repulsion by the Drosophila Unc5 netrin receptor. Neuron 32, 605–617 (2001)

    Article  CAS  PubMed  Google Scholar 

  27. Engelkamp, D. Cloning of three mouse Unc5 genes and their expression patterns at mid-gestation. Mech. Dev. 118, 191–197 (2002)

    Article  CAS  PubMed  Google Scholar 

  28. Przyborski, S. A., Knowles, B. B. & Ackerman, S. L. Embryonic phenotype of Unc5h3 mutant mice suggests chemorepulsion during the formation of the rostral cerebellar boundary. Development 125, 41–50 (1998)

    Article  CAS  PubMed  Google Scholar 

  29. Barallobre, M. J. et al. Aberrant development of hippocampal circuits and altered neural activity in netrin 1-deficient mice. Development 127, 4797–4810 (2000)

    Article  CAS  PubMed  Google Scholar 

  30. Deiner, M. S. et al. Netrin-1 and DCC mediate axon guidance locally at the optic disc: loss of function leads to optic nerve hypoplasia. Neuron 19, 575–589 (1997)

    Article  CAS  PubMed  Google Scholar 

  31. Jiang, Y., Liu, M. T. & Gershon, M. D. Netrins and DCC in the guidance of migrating neural crest-derived cells in the developing bowel and pancreas. Dev. Biol. 258, 364–384 (2003)

    Article  CAS  PubMed  Google Scholar 

  32. Barrett, C. & Guthrie, S. Expression patterns of the netrin receptor UNC5H1 among developing motor neurons in the embryonic rat hindbrain. Mech. Dev. 106, 163–166 (2001)

    Article  CAS  PubMed  Google Scholar 

  33. Liu, Y. et al. Novel role for netrins in regulating epithelial behavior during lung branching morphogenesis. Curr. Biol. 14, 897–905 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Leighton, P. A. et al. Defining brain wiring patterns and mechanisms through gene trapping in mice. Nature 410, 174–179 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Lawson, N. D. & Weinstein, B. M. Arteries and veins: making a difference with zebrafish. Nature Rev. Genet. 3, 674–682 (2002)

    Article  CAS  PubMed  Google Scholar 

  36. Lawson, N. D. & Weinstein, B. M. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev. Biol. 248, 307–318 (2002)

    Article  CAS  PubMed  Google Scholar 

  37. Lauderdale, J. D., Davis, N. M. & Kuwada, J. Y. Axon tracts correlate with netrin-1a expression in the zebrafish embryo. Mol. Cell. Neurosci. 9, 293–313 (1997)

    Article  CAS  PubMed  Google Scholar 

  38. Corset, V. et al. Netrin-1-mediated axon outgrowth and cAMP production requires interaction with adenosine A2b receptor. Nature 407, 747–750 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Shirasaki, R., Mirzayan, C., Tessier-Lavigne, M. & Murakami, F. Guidance of circumferentially growing axons by netrin-dependent and -independent floor plate chemotropism in the vertebrate brain. Neuron 17, 1079–1088 (1996)

    Article  CAS  PubMed  Google Scholar 

  40. Koch, M. et al. A novel member of the netrin family, beta-netrin, shares homology with the beta chain of laminin: identification, expression, and functional characterization. J. Cell Biol. 151, 221–234 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Llambi, F., Causeret, F., Bloch-Gallego, E. & Mehlen, P. Netrin-1 acts as a survival factor via its receptors UNC5H and DCC. EMBO J. 20, 2715–2722 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tanikawa, C., Matsuda, K., Fukuda, S., Nakamura, Y. & Arakawa, H. p53RDL1 regulates p53-dependent apoptosis. Nature Cell Biol. 5, 216–223 (2003)

    Article  CAS  PubMed  Google Scholar 

  43. Carmeliet, P. et al. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98, 147–157 (1999)

    Article  CAS  PubMed  Google Scholar 

  44. Yin, Y., Sanes, J. R. & Miner, J. H. Identification and expression of mouse netrin-4. Mech. Dev. 96, 115–119 (2000)

    Article  CAS  PubMed  Google Scholar 

  45. Wang, H., Copeland, N. G., Gilbert, D. J., Jenkins, N. A. & Tessier-Lavigne, M. Netrin-3, a mouse homolog of human NTN2L, is highly expressed in sensory ganglia and shows differential binding to netrin receptors. J. Neurosci. 19, 4938–4947 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Westerfield, M. The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio Rerio) (Univ. Oregon Press, Eugene, 1994)

    Google Scholar 

  47. Stalmans, I. et al. VEGF: a modifier of the del22q11 (DiGeorge) syndrome? Nature Med. 9, 173–182 (2003)

    Article  CAS  PubMed  Google Scholar 

  48. Sugiyama, D. et al. Erythropoiesis from acetyl LDL incorporating endothelial cells at the preliver stage. Blood 101, 4733–4738 (2003)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of U36 for critical discussions; E. Etienne, A. Réaux, C. Esguerra and S. Maity for their expertise; C. Betsholtz for the Pdgfrb probe; H. Gerhardt for sharing unpublished data; and H. Rayburn, C. Jolicoeur, J. Zhong, S. Terclavers, A. Claes, A. Vanhuffelen and S. Wyns for technical support. This work was supported by grants from Inserm (Avenir), Fondation Schlumberger pour l'Education et la Recherche (FSER), Ministère de l'Education et de la Recherche (ACI Biologie du Développement), Association pour la Recherche contre le Cancer (ARC) to A.E., a European Union grant to A.E. and P.C., and grants to M.T.-L. from the NIMH and the NHLBI. F.l.N. was supported by the Royal Dutch Academy of Science (KNAW) and Avenir; X.L. by the Damon Runyon Cancer Research Foundation; and M.T.-L. by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marc Tessier-Lavigne or Anne Eichmann.

Ethics declarations

Competing interests

M.T.-L. is an inventor of patents covering members of the mammalian UNC5 and netrin families. He is a member of the scientific advisory board and a shareholder of Renovis Inc., and is employed by and a shareholder of Genentech Inc. Both companies have a commercial interest in members of these families.

Supplementary information

Supplementary Figure 1

Unc5b expression in arterial endothelial cells in the mouse retina. Double-labelings of retina wholemounts with isolectinB4, lacZ, Unc5b and pdgfr-β in situ hybridizations. (PPT 6999 kb)

Supplementary Figure 2

Generation of Unc5b mutant mice. Representation of gene inactivation strategy and evidence for absence of Unc5b transcripts in homozygous mutant mouse embryos. (PPT 1596 kb)

Supplementary Figure 3

Specificity of zebrafish morpholino knockdowns (a) and Northern blot analysis of Unc5b expression in primary human endothelial cells (b). (PPT 955 kb)

Supplementary Figure 4

Aortic ring assays. Overview of aortic ring cultures in controls, in the presence of netrin-1/UNC5B-Fc and in the presence of netrin-1, as well as statistical analysis of endothelial cell movement. (PPT 171 kb)

Supplementary Movie 1

Control endothelial tip cell. Random filopodial movement. (MOV 3447 kb)

Supplementary Movie 2

Endothelial tip cells faced with a gradient of pre-clustered Netrin-1/UNC5B-Fc. Random filopodial movement. (MOV 1745 kb)

Supplementary Movie 3

Endothelial tip cells faced with a gradient of Netrin-1, note filopodial retraction and backward movement of the cells. (MOV 3369 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, X., le Noble, F., Yuan, L. et al. The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature 432, 179–186 (2004). https://doi.org/10.1038/nature03080

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03080

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing