Letters to Nature

Nature 432, 75-77 (4 November 2004) | doi:10.1038/nature02960; Received 23 June 2004; Accepted 17 August 2004

High-energy particle acceleration in the shell of a supernova remnant

F. A. Aharonian1, A. G. Akhperjanian2, K.-M. Aye3, A. R. Bazer-Bachi4, M. Beilicke5, W. Benbow1, D. Berge1, P. Berghaus6,21, K. Bernlöhr1,7, O. Bolz1, C. Boisson8, C. Borgmeier7, F. Breitling7, A. M. Brown3, J. Bussons Gordo9, P. M. Chadwick3, V. R. Chitnis10,20,21, L.-M. Chounet11, R. Cornils5, L. Costamante1,20, B. Degrange11, A. Djannati-Ataï6, L. O'C. Drury12, T. Ergin7, P. Espigat6, F. Feinstein9, P. Fleury11, G. Fontaine11, S. Funk1, Y. A. Gallant9, B. Giebels11, S. Gillessen1, P. Goret13, J. Guy10, C. Hadjichristidis3, M. Hauser14, G. Heinzelmann5, G. Henri15, G. Hermann1, J. A. Hinton1, W. Hofmann1, M. Holleran16, D. Horns1, O. C. de Jager16, I. Jung1,14,21, B. Khélifi1, Nu. Komin7, A. Konopelko1,7, I. J. Latham3, R. Le Gallou3, M. Lemoine11, A. Lemière6, N. Leroy11, T. Lohse7, A. Marcowith4, C. Masterson1,20, T. J. L. McComb3, M. de Naurois10, S. J. Nolan3, A. Noutsos3, K. J. Orford3, J. L. Osborne3, M. Ouchrif10,20, M. Panter1, G. Pelletier15, S. Pita6, M. Pohl17,21, G. Pühlhofer1,14, M. Punch6, B. C. Raubenheimer16, M. Raue5, J. Raux10, S. M. Rayner3, I. Redondo11,20,21, A. Reimer17, O. Reimer17, J. Ripken5, M. Rivoal10, L. Rob18, L. Rolland10, G. Rowell1, V. Sahakian2, L. Saugé15, S. Schlenker7, R. Schlickeiser17, C. Schuster17, U. Schwanke7, M. Siewert17, H. Sol8, R. Steenkamp19, C. Stegmann7, J.-P. Tavernet10, C. G. Théoret6, M. Tluczykont11,20, D. J. van der Walt16, G. Vasileiadis9, P. Vincent10, B. Visser16, H. J. Völk1 & S. J. Wagner14

  1. Max-Planck-Institut für Kernphysik, PO Box 103980, D 69029 Heidelberg, Germany
  2. Yerevan Physics Institute, 2 Alikhanian Brothers Street, 375036 Yerevan, Armenia
  3. Department of Physics, University of Durham, South Road, Durham DH1 3LE, UK
  4. Centre d'Etude Spatiale des Rayonnements, CNRS/UPS, 9 av. du Colonel Roche, BP 4346, F-31029 Toulouse Cedex 4, France
  5. Institut für Experimentalphysik, Universität Hamburg, Luruper Chaussee 149, D 22761 Hamburg, Germany
  6. Physique Corpusculaire et Cosmologie, IN2P3/CNRS, Collège de France, 11 Place Marcelin Berthelot, F-75231 Paris Cedex 05, France
  7. Institut für Physik, Humboldt-Universität zu Berlin, Newtonstrasse 15, D 12489 Berlin, Germany
  8. LUTH, UMR 8102 du CNRS, Observatoire de Paris, Section de Meudon, F-92195 Meudon Cedex, France
  9. Groupe d'Astroparticules de Montpellier, IN2P3/CNRS, Université Montpellier II, CC85, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France
  10. Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Universités Paris VI & VII, 4 Place Jussieu, F-75231 Paris Cedex 05, France
  11. Laboratoire Leprince-Ringuet, IN2P3/CNRS, Ecole Polytechnique, F-91128 Palaiseau, France
  12. Dublin Institute for Advanced Studies, 5 Merrion Square, Dublin 2, Ireland
  13. Service d'Astrophysique, DAPNIA/DSM/CEA, CE Saclay, F-91191 Gif-sur-Yvette, France
  14. Landessternwarte, Königstuhl, D 69117 Heidelberg, Germany
  15. Laboratoire d'Astrophysique de Grenoble, INSU/CNRS, Université Joseph Fourier, BP 53, F-38041 Grenoble Cedex 9, France
  16. Unit for Space Physics, North-West University, Potchefstroom 2520, South Africa
  17. Institut für Theoretische Physik, Lehrstuhl IV: Weltraum und Astrophysik, Ruhr-Universität Bochum, D 44780 Bochum, Germany
  18. Institute of Particle and Nuclear Physics, Charles University, V Holesovickach 2, 180 00 Prague 8, Czech Republic
  19. University of Namibia, Private Bag 13301, Windhoek, Namibia
  20. European Associated Laboratory for Gamma-Ray Astronomy
  21. Present addresses: Université Libre de Bruxelles, Faculté des Sciences, Campus de la Plaine, CP230, Boulevard du Triomphe, 1050 Bruxelles, Belgium (P.B.); Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India (V.R.C.); Washington University, Department of Physics, 1 Brookings Drive, CB 1105, St Louis, Missouri 63130, USA (I.J.); Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011-3160, USA (M.P.); Department of Physics and Astronomy, University of Sheffield, The Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK (I.R.)

Correspondence to: D. Berge1 Email: David.Berge@mpi-hd.mpg.de

A significant fraction of the energy density of the interstellar medium is in the form of high-energy charged particles (cosmic rays)1. The origin of these particles remains uncertain. Although it is generally accepted that the only sources capable of supplying the energy required to accelerate the bulk of Galactic cosmic rays are supernova explosions, and even though the mechanism of particle acceleration in expanding supernova remnant (SNR) shocks is thought to be well understood theoretically2, 3, unequivocal evidence for the production of high-energy particles in supernova shells has proven remarkably hard to find. Here we report on observations of the SNR RX J1713.7 - 3946 (G347.3 - 0.5), which was discovered by ROSAT4 in the X-ray spectrum and later claimed as a source of high-energy gamma-rays5, 6 of TeV energies (1 TeV = 1012 eV). We present a TeV gamma-ray image of the SNR: the spatially resolved remnant has a shell morphology similar to that seen in X-rays, which demonstrates that very-high-energy particles are accelerated there. The energy spectrum indicates efficient acceleration of charged particles to energies beyond 100 TeV, consistent with current ideas of particle acceleration in young SNR shocks.


These links to content published by NPG are automatically generated.


Astronomy The cosmic accelerator

Nature News and Views (25 Apr 2002)

Astroparticle physics Cosmic-ray acceleration at the limit

Nature Physics News and Views (01 Sep 2006)

See all 10 matches for News And Views