Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia

Abstract

Currently, it is widely accepted that only one hominin genus, Homo, was present in Pleistocene Asia, represented by two species, Homo erectus and Homo sapiens. Both species are characterized by greater brain size, increased body height and smaller teeth relative to Pliocene Australopithecus in Africa. Here we report the discovery, from the Late Pleistocene of Flores, Indonesia, of an adult hominin with stature and endocranial volume approximating 1 m and 380 cm3, respectively—equal to the smallest-known australopithecines. The combination of primitive and derived features assigns this hominin to a new species, Homo floresiensis. The most likely explanation for its existence on Flores is long-term isolation, with subsequent endemic dwarfing, of an ancestral H. erectus population. Importantly, H. floresiensis shows that the genus Homo is morphologically more varied and flexible in its adaptive responses than previously thought.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The LB1 cranium and mandible in lateral and three-quarter views, and cranium in frontal, posterior, superior and inferior views.
Figure 2: Rendered three-dimensional and individual midsagittal CT section views of the LB1 cranium and mandible.
Figure 3: Relationship between endocranial volume and femur length in LB1, A. afarensis, A. africanus, early Homo sp., H. erectus and modern H. sapiens.
Figure 4: Right lateral and occlusal views of the LB1 mandible, sagittal profile of the symphysis, occlusal view of the mandibular dentition and occlusal views of the mandibular premolars.
Figure 5: Mean buccolingual tooth crown breadths for mandibular teeth in A. afarensis (filled circles), A. africanus (open circles), early Homo sp. (open squares), modern H. sapiens (filled squares), LB1 (filled stars) and LB2 (open stars).
Figure 6: Comparison of the left innominate from LB1 with a modern adult female H. sapiens.
Figure 7: Anterior and posterior views of the LB1 right femur and tibia, with cross-sections of the femur neck and midshaft, and tibia midshaft.

Similar content being viewed by others

References

  1. Morwood, M. J. et al. Archaeology and age of a new hominin from Flores in eastern Indonesia. Nature doi:10.1038/nature02956 431, 1087–1091 (2004)

    Article  ADS  CAS  Google Scholar 

  2. Wood, B. A. Koobi Fora Research Project, Vol. 4: Hominid Cranial Remains (Clarendon, Oxford, 1991)

    Google Scholar 

  3. Vekua, A. K. et al. A new skull of early Homo from Dmanisi, Georgia. Science 297, 85–89 (2002)

    Article  ADS  CAS  Google Scholar 

  4. Spoor, C. F. Basicranial architecture and relative brain size of STS 5 (Australopithecus africanus) and other Plio-Pleistocene hominids. S. Afr. J. Sci. 93, 182–186 (1997)

    Google Scholar 

  5. Lieberman, D., Ross, C. F. & Ravosa, M. J. The primate cranial base: ontogeny, function, and integration. Yearb. Phys. Anthropol. 43, 117–169 (2000)

    Article  Google Scholar 

  6. Baba, H. et al. Homo erectus calvarium from the Pleistocene of Java. Science 299, 1384–1388 (2003)

    Article  CAS  Google Scholar 

  7. Tobias, P. V. The Skulls, Endocasts and Teeth of Homo habilis (Cambridge Univ. Press, Cambridge, 1991)

    Google Scholar 

  8. McHenry, H. M. & Coffing, K. E. Australopithecus to Homo: Transformations of body and mind. Annu. Rev. Anthropol. 29, 125–166 (2000)

    Article  Google Scholar 

  9. Brown, P. Vault thickness in Asian Homo erectus and modern Homo sapiens. Courier Forschungs-Institut Senckenberg 171, 33–46 (1994)

    Google Scholar 

  10. Bräuer, G. & Mbua, E. Homo erectus features used in cladistics and their variability in Asian and African hominids. J. Hum. Evol. 22, 79–108 (1992)

    Article  Google Scholar 

  11. Santa Luca, A. P. The Ngandong Fossil Hominids (Department of Anthropology Yale Univ., New Haven, 1980)

    Google Scholar 

  12. Weidenreich, F. The skull of Sinanthropus pekinensis: a comparative study of a primitive hominid skull. Palaeontol. Sin. D10, 1–485 (1943)

    Google Scholar 

  13. Brown, P. & Maeda, T. Post-Pleistocene diachronic change in East Asian facial skeletons: the size, shape and volume of the orbits. Anthropol. Sci. 112, 29–40 (2004)

    Article  Google Scholar 

  14. Gabunia, L. K. et al. Earliest Pleistocene hominid cranial remains from Dmanisi, Republic of Georgia: taxonomy, geological setting, and age. Science 288, 1019–1025 (2000)

    Article  ADS  CAS  Google Scholar 

  15. Kaifu, Y. et al. Taxonomic affinities and evolutionary history of the Early Pleistocene hominids of Java: dento-gnathic evidence. Am. J. Phys. Anthropol. (in the press)

  16. McHenry, H. M. in Evolutionary History of the ‘Robust’ Australopithecines (ed. Grine, F. E.) 133–148 (Aldine de Gruyter, New York, 1988)

    Google Scholar 

  17. Wood, B. A. & Uytterschaut, H. Analysis of the dental morphology of the Plio-Pleistocene hominids. III. Mandibular premolar crowns. J. Anat. 154, 121–156 (1987)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wood, B. A., Abbott, S. A. & Uytterschaut, H. Analysis of the dental morphology of Plio-Pleistocene hominids. IV. Mandibular postcanine root morphology. J. Anat. 156, 107–139 (1988)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Aiello, A. & Dean, C. An Introduction to Human Evolutionary Anatomy (Academic, London, 1990)

    Google Scholar 

  20. Kennedy, G. E. Some aspects of femoral morphology in Homo erectus. J. Hum. Evol. 12, 587–616 (1983)

    Article  Google Scholar 

  21. Haeusler, M. & McHenry, H. M. Body proportions of Homo habilis reviewed. J. Hum. Evol. 46, 433–465 (2004)

    Article  Google Scholar 

  22. Stern, J. T. J. & Susman, R. L. The locomotor anatomy of Australopithecus afarensis. Am. J. Phys. Anthropol. 60, 279–317 (1983)

    Article  Google Scholar 

  23. Ruff, C. B. Morphological adaptation to climate in modern and fossil hominids. Yearb. Phys. Anthropol. 37, 65–107 (1994)

    Article  Google Scholar 

  24. Jungers, W. L. Lucy's limbs: skeletal allometry and locomotion in Australopithecus afarensis. Nature 297, 676–678 (1982)

    Article  ADS  Google Scholar 

  25. Jungers, W. L. Lucy's length: stature reconstruction in Australopithecus afarensis (A.L.288–1) with implications for other small-bodied hominids. Am. J. Phys. Anthropol. 76, 227–231 (1988)

    Article  CAS  Google Scholar 

  26. Count, E. W. Brain and body weight in man: their antecendants in growth and evolution. Ann. NY Acad. Sci. 46, 993–1101 (1947)

    Article  ADS  Google Scholar 

  27. Martin, R. D. Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature 293, 57–60 (1981)

    Article  ADS  CAS  Google Scholar 

  28. Jerison, H. J. Evolution of the Brain and Intelligence (Academic, New York, 1973)

    Google Scholar 

  29. McHenry, H. M. in The Primate Fossil Record (ed. Hartwig, C. H.) 401–406 (Cambridge Univ. Press, Cambridge, 2002)

    Google Scholar 

  30. Cavalli-Sforza, L. L. (ed.) African Pygmies (Academic, Orlando, 1986)

  31. Shea, B. T. & Bailey, R. C. Allometry and adaptation of body proportions and stature in African Pygmies. Am. J. Phys. Anthropol. 100, 311–340 (1996)

    Article  CAS  Google Scholar 

  32. Roberts, D. F. Climate and Human Variability (Cummings Publishing Co., Menlo Park, 1978)

    Google Scholar 

  33. Merimee, T. J., Zapf, J., Hewlett, B. & Cavalli-Sforza, L. L. Insulin-like growth factors in pygmies. N. Engl. J. Med. 15, 906–911 (1987)

    Article  Google Scholar 

  34. Geffner, M. E., Bersch, N., Bailey, R. C. & Golde, D. W. Insulin-like growth factor I resistance in immortalized T cell lines from African Efe Pygmies. J. Clin. Endocrinol. Metab. 80, 3732–3738 (1995)

    Article  CAS  Google Scholar 

  35. Hiernaux, J. The People of Africa (Charles Scribner's Sons, New York, 1974)

    Google Scholar 

  36. Beals, K. L., Smith, C. L. & Dodd, S. M. Brain size, cranial morphology, climate and time machines. Current Anthropology 25, 301–330 (1984)

    Article  Google Scholar 

  37. Rimoin, D. L., Merimee, T. J. & McKusick, V. A. Growth-hormone deficiency in man: an isolated, recessively inherited defect. Science 152, 1635–1637 (1966)

    Article  ADS  CAS  Google Scholar 

  38. Jaffe, H. L. Metabolic, Degenerative and Inflammatory Disease of Bones and Joints (Lea and Febiger, Philadelphia, 1972)

    Google Scholar 

  39. Seckel, H. P. G. Bird-Headed Dwarfs (Karger, Basel, 1960)

    Google Scholar 

  40. Jeffery, N. & Berkovitz, B. K. B. Morphometric appraisal of the skull of Caroline Crachami, the Sicilian “Dwarf” 1815?–1824: A contribution to the study of primordial microcephalic dwarfism. Am. J. Med. Genet. 11, 260–270 (2002)

    Article  Google Scholar 

  41. Sondaar, P. Y. in Major Patterns in Vertebrate Evolution (eds Hecht, M. K., Goody, P. C. & Hecht, B. M.) 671–707 (Plenum, New York, 1977)

    Book  Google Scholar 

  42. Lomolino, M. V. Body size of mammals on islands: The island rule re-examined. Am. Nat. 125, 310–316 (1985)

    Article  Google Scholar 

  43. Bailey, R. C. & Headland, T. The tropical rainforest: Is it a productive habitat for human foragers? Hum. Ecol. 19, 261–285 (1991)

    Article  Google Scholar 

  44. Köhler, M. & Moyà-Solà, S. Reduction of brain and sense organs in the fossil insular bovid Myotragus. Brain Behav. Evol. 63, 125–140 (2004)

    Article  Google Scholar 

  45. Morwood, M. J., O'Sullivan, P. B., Aziz, F. & Raza, A. Fission-track ages of stone tools and fossils on the east Indonesian island of Flores. Nature 392, 173–176 (1998)

    Article  ADS  CAS  Google Scholar 

  46. Walker, A. C. & Leakey, R. (eds) The Nariokotome Homo erectus skeleton (Harvard Univ. Press, Cambridge, 1993)

  47. Rak, Y. The Australopithecine Face (Academic, New York, 1983)

    Book  Google Scholar 

  48. Wood, B. A. & Collard, M. The human genus. Science 284, 65–71 (1999)

    Article  CAS  Google Scholar 

  49. Johanson, D. C. & White, T. D. A systematic assessment of early African Hominids. Science 202, 321–330 (1979)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank F. Spoor and L. Aiello for data and discussion. Comments by F. Spoor and D. Lieberman greatly improved aspects of the original manuscript. Conversation with S. Collier, C. Groves, T. White and P. Grave helped clarify some issues. CT scans were produced by CT-Scan KSU, Medical Diagnostic Nusantara, Jakarta. S. Wasisto completed complex section drawings and assisted with the excavation of Sector VII. The 2003 excavations at Liang Bua, undertaken under Indonesian Centre for Archaeology Permit Number 1178/SB/PUS/BD/24.VI/2003, were funded by a Discovery Grant to M.J.M. from the Australian Research Council. UNE Faculty of Arts, and M. Macklin, helped fund the manufacture of stereolithographic models of LB1.Authors contributions P.B. reconstructed the LB1 cranium and was responsible for researching and writing this article, with M.J.M. T.S. directed many aspects of the Liang Bua excavations, including the recovery of the hominin skeleton. M.J.M. and R.P.S. are Principal Investigators and Institutional Counterparts in the ARC project, as well as Co-Directors of the Liang Bua excavations. E.W.S. and Jatmiko assisted T.S., and had prime responsibility for the work in Sector VII. R.A.D. did all of the initial faunal identifications at Liang Bua, including hominin material, and helped clean and conserve it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Brown.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Table 1

Comparative cranial and mandibular dimensions and indices for LB1, A. africanus, early Homo, Homo erectus, and a robust modern H. sapiens sample. (DOC 103 kb)

Supplementary Table 2

Buccolingual crown dimensions for the maxillary and mandibular teeth of LB1, and male and female modern H. sapiens (mm). (DOC 42 kb)

Supplementary Figure 1

First and second principal component scores of linear measurements of the cranial vault in LB1, Indonesian, African and European H. erectus, H. habilis and Australopithecus africanus. (JPG 42 kb)

Supplementary Figure 2

Distal and occlusal views of the isolated LB2 mandibular left P3. Scale bar, 1 cm. (JPG 59 kb)

Supplementary Text File

Captions for supplementary figures and tables, discussion and description of methods used. (DOC 49 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, P., Sutikna, T., Morwood, M. et al. A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia. Nature 431, 1055–1061 (2004). https://doi.org/10.1038/nature02999

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02999

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing