Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A tunable carbon nanotube electromechanical oscillator

Abstract

Nanoelectromechanical systems (NEMS) hold promise for a number of scientific and technological applications. In particular, NEMS oscillators have been proposed for use in ultrasensitive mass detection1,2, radio-frequency signal processing3,4, and as a model system for exploring quantum phenomena in macroscopic systems5,6. Perhaps the ultimate material for these applications is a carbon nanotube. They are the stiffest material known, have low density, ultrasmall cross-sections and can be defect-free. Equally important, a nanotube can act as a transistor7 and thus may be able to sense its own motion. In spite of this great promise, a room-temperature, self-detecting nanotube oscillator has not been realized, although some progress has been made8,9,10,11,12. Here we report the electrical actuation and detection of the guitar-string-like oscillation modes of doubly clamped nanotube oscillators. We show that the resonance frequency can be widely tuned and that the devices can be used to transduce very small forces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device geometry and diagram of experimental set-up.
Figure 2: Measurements of the resonant response.
Figure 3: Amplitude and pressure dependence of the resonance.

Similar content being viewed by others

References

  1. Sidles, J. A. et al. Magnetic-resonance force microscopy. Rev. Mod. Phys. 67, 249–265 (1995)

    Article  ADS  CAS  Google Scholar 

  2. Roukes, M. Plenty of room indeed. Sci. Am. 285, 48–57 (2001)

    Article  CAS  Google Scholar 

  3. Nguyen, C. T. C. Frequency-selective MEMS for miniaturized low-power communication devices. IEEE Trans. Microwave Theory Tech. 47, 1486–1503 (1999)

    Article  ADS  Google Scholar 

  4. Nguyen, C. T. C., Wong, A.-C. & Hao, D. Solid-State Circuits Conf. 78–79, 1999 (Digest of Technical Papers, ISSCC, IEEE International, San Francisco, California, 1999)

    Google Scholar 

  5. Cho, A. Physics—Researchers race to put the quantum into mechanics. Science 299, 36–37 (2003)

    Article  CAS  Google Scholar 

  6. LaHaye, M. D., Buu, O., Camarota, B. & Schwab, K. C. Approaching the quantum limit of a nanomechanical resonator. Science 304, 74–77 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Dresselhaus, M. S., Dresselhaus, G. & Avouris, P. Carbon Nanotubes (Springer, Berlin, 2001)

    Book  Google Scholar 

  8. Poncharal, P., Wang, Z. L., Ugarte, D. & de Heer, W. A. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513–1516 (1999)

    Article  ADS  CAS  Google Scholar 

  9. Gao, R. P. et al. Nanomechanics of individual carbon nanotubes from pyrolytically grown arrays. Phys. Rev. Lett. 85, 622–625 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Reulet, B. et al. Acoustoelectric effects in carbon nanotubes. Phys. Rev. Lett. 85, 2829–2832 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Purcell, S. T., Vincent, P., Journet, C. & Binh, V. T. Tuning of nanotube mechanical resonances by electric field pulling. Phys. Rev. Lett. 89, 276103 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Babic, B., Furer, J., Sahoo, S., Farhangfar, S. & Schonenberger, C. Intrinsic thermal vibrations of suspended doubly clamped single-wall carbon nanotubes. Nano Lett. 3, 1577–1580 (2003)

    Article  ADS  CAS  Google Scholar 

  13. Minot, E. D. et al. Tuning carbon nanotube band gaps with strain. Phys. Rev. Lett. 90, 156401 (2003)

    Article  ADS  CAS  Google Scholar 

  14. Kong, J., Soh, H. T., Cassell, A. M., Quate, C. F. & Dai, H. J. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395, 878–881 (1998)

    Article  ADS  CAS  Google Scholar 

  15. Hertel, T., Walkup, R. E. & Avouris, P. Deformation of carbon nanotubes by surface van der Waals forces. Phys. Rev. B 58, 13870–13873 (1998)

    Article  ADS  CAS  Google Scholar 

  16. Tans, S. J., Verschueren, A. R. M. & Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998)

    Article  ADS  CAS  Google Scholar 

  17. Zhou, C. W., Kong, J. & Dai, H. J. Intrinsic electrical properties of individual single-walled carbon nanotubes with small band gaps. Phys. Rev. Lett. 84, 5604–5607 (2000)

    Article  ADS  CAS  Google Scholar 

  18. Minot, E. D., Yaish, Y., Sazonova, V. & McEuen, P. L. Determination of electron orbital magnetic moments in carbon nanotubes. Nature 428, 536–539 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Knobel, R. G. & Cleland, A. N. Nanometre-scale displacement sensing using a single electron transistor. Nature 424, 291–293 (2003)

    Article  ADS  CAS  Google Scholar 

  20. Brenner, D. W. Empirical potential for hydrocarbons for use in simulating the chemical vapor-deposition of diamond films. Phys. Rev. B 42, 9458–9471 (1990)

    Article  ADS  CAS  Google Scholar 

  21. Sapmaz, S., Blanter, Y. M., Gurevich, L. & van der Zant, H. S. J. Carbon nanotubes as nanoelectromechanical systems. Phys. Rev. B 67, 235414 (2003)

    Article  ADS  Google Scholar 

  22. Yurke, B., Greywall, D. S., Pargellis, A. N. & Busch, P. A. Theory of amplifier-noise evasion in an oscillator employing a nonlinear resonator. Phys. Rev. A. 51, 4211–4229 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Bhiladvala, R. B. & Wang, Z. J. Effect of fluids on the Q-factors and resonance frequency of oscillating beams. Phys. Rev. E 69, 036307 (2004)

    Article  ADS  Google Scholar 

  24. Jenkins, N. E. et al. Batch fabrication and characterization of ultrasensitive cantilevers with submicron magnetic tips. J. Vac. Sci. Technol. B 22, 909–915 (2004)

    Article  CAS  Google Scholar 

  25. Stowe, T. D. et al. Attonewton force detection using ultrathin silicon cantilevers. Appl. Phys. Lett. 71, 288–290 (1997)

    Article  ADS  CAS  Google Scholar 

  26. Mohanty, P., Harrington, D. A. & Roukes, M. L. Measurement of small forces in micron-sized resonators. Physica B 284, 2143–2144 (2000)

    Article  ADS  Google Scholar 

  27. Stipe, B. C., Mamin, H. J., Stowe, T. D., Kenny, T. W. & Rugar, D. Magnetic dissipation and fluctuations in individual nanomagnets measured by ultrasensitive cantilever magnetometry. Phys. Rev. Lett. 86, 2874–2877 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Mamin, H. J. & Rugar, D. Sub-attonewton force detection at millikelvin temperatures. Appl. Phys. Lett. 79, 3358–3360 (2001)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Minot for discussions. This work was supported by the NSF through the Cornell Center for Materials Research and the NIRT program, and by the MARCO Focused Research Center on Materials, Structures, and Devices. Sample fabrication was performed at the Cornell Nano-Scale Science and Technology Facility (a member of the National Nanofabrication Infrastructure Network), funded by the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul L. McEuen.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sazonova, V., Yaish, Y., Üstünel, H. et al. A tunable carbon nanotube electromechanical oscillator. Nature 431, 284–287 (2004). https://doi.org/10.1038/nature02905

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02905

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing