Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the ESCRT-II endosomal trafficking complex

Abstract

The multivesicular-body (MVB) pathway delivers transmembrane proteins and lipids to the lumen of the endosome. The multivesicular-body sorting pathway has crucial roles in growth-factor-receptor downregulation1, developmental signalling2,3,4, regulation of the immune response5 and the budding of certain enveloped viruses such as human immunodeficiency virus6. Ubiquitination is a signal for sorting into the MVB pathway7,8, which also requires the functions of three protein complexes, termed ESCRT-I, -II and -III (endosomal sorting complex required for transport)7,9,10. Here we report the crystal structure of the core of the yeast ESCRT-II complex, which contains one molecule of the Vps protein Vps22, the carboxy-terminal domain of Vps36 and two molecules of Vps25, and has the shape of a capital letter ‘Y’. The amino-terminal coiled coil of Vps22 and the flexible linker leading to the ubiquitin-binding NZF domain of Vps36 both protrude from the tip of one branch of the ‘Y’. Vps22 and Vps36 form nearly equivalent interactions with the two Vps25 molecules at the centre of the ‘Y’. The structure suggests how ubiquitinated cargo could be passed between ESCRT components of the MVB pathway through the sequential transfer of ubiquitinated cargo from one complex to the next.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the ESCRT-II complex.
Figure 2: Winged helix folds in ESCRT-II.
Figure 3: ESCRT-II complex assembly and subunit interactions.
Figure 4: Mutational analysis of ESCRT-II subunit interfaces.

Similar content being viewed by others

References

  1. Futter, C. E., Pearse, A., Hewlett, L. J. & Hopkins, C. R. Multivesicular endosomes containing internalized EGF-EGF receptor complexes mature and then fuse directly with lysosomes. J. Cell Biol. 132, 1011–1023 (1996)

    Article  CAS  Google Scholar 

  2. Deblandre, G. A., Lai, E. C. & Kintner, C. Xenopus neuralized is a ubiquitin ligase that interacts with XDelta1 and regulates Notch signaling. Dev. Cell 1, 795–806 (2001)

    Article  CAS  Google Scholar 

  3. Lai, E. C., Deblandre, G. A., Kintner, C. & Rubin, G. M. Drosophila neuralized is a ubiquitin ligase that promotes the internalization and degradation of Delta. Dev. Cell 1, 783–794 (2001)

    Article  CAS  Google Scholar 

  4. Pavlopoulos, E. et al. neuralized encodes a peripheral membrane protein involved in Delta signaling and endocytosis. Dev. Cell 1, 807–816 (2001)

    Article  CAS  Google Scholar 

  5. Kleijmeer, M. et al. Reorganization of multivesicular bodies regulates MHC class II antigen presentation by dendritic cells. J. Cell Biol. 155, 53–63 (2001)

    Article  CAS  Google Scholar 

  6. Garrus, J. E. et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107, 55–65 (2001)

    Article  CAS  Google Scholar 

  7. Katzmann, D. J., Babst, M. & Emr, S. D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106, 145–155 (2001)

    Article  CAS  Google Scholar 

  8. Reggiori, F. & Pelham, H. R. B. Sorting of proteins into multivesicular bodies: ubiquitin-dependent and -independent targeting. EMBO J. 20, 5176–5186 (2001)

    Article  CAS  Google Scholar 

  9. Babst, M., Katzmann, D. J., Snyder, W. B., Wendland, B. & Emr, S. D. Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Dev. Cell 3, 283–289 (2002)

    Article  CAS  Google Scholar 

  10. Babst, M., Katzmann, D. J., Estepa-Sabal, E. J., Meerloo, T. & Emr, S. D. ESCRT-III: An endosome-associated heterooligomeric protein complex required for MVB sorting. Dev. Cell 3, 271–282 (2002)

    Article  CAS  Google Scholar 

  11. Raymond, C. K., Roberts, C. J., Moore, K. E., Howald, I. & Stevens, T. H. Biogenesis of the vacuole in Saccharomyces cerevisiae. Int. Rev.Cytol. 139, 59–120 (1992)

    Article  CAS  Google Scholar 

  12. Katzmann, D. J., Odorizzi, G. & Emr, S. D. Receptor downregulation and multivesicular-body sorting. Nature Rev. Mol. Cell Biol. 3, 893–905 (2002)

    Article  CAS  Google Scholar 

  13. Katzmann, D. J., Stefan, C. J., Babst, M. & Emr, S. D. Vps27 recruits ESCRT machinery to endosomes during MVB sorting. J. Cell Biol. 162, 413–423 (2003)

    Article  CAS  Google Scholar 

  14. Bache, K. G., Brech, A., Mehlum, A. & Stenmark, H. Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes. J. Cell Biol. 162, 435–442 (2003)

    Article  CAS  Google Scholar 

  15. Bilodeau, P. S., Urbanowski, J. L., Winistorfer, S. C. & Piper, R. C. The Vps27p-Hse1p complex binds ubiquitin and mediates endosomal protein sorting. Nature Cell Biol. 4, 534–539 (2002)

    Article  CAS  Google Scholar 

  16. Lu, Q., Hope, L. W. Q., Brasch, M., Reinhard, C. & Cohen, S. N. TSG101 interaction with HRS mediates endosomal trafficking and receptor down-regulation. Proc. Natl Acad. Sci. USA 100, 7626–7631 (2003)

    Article  ADS  CAS  Google Scholar 

  17. Babst, M., Wendland, B., Estepa, E. J. & Emr, S. D. The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J. 17, 2982–2993 (1998)

    Article  CAS  Google Scholar 

  18. Gajiwala, K. S. & Burley, S. K. Winged helix proteins. Curr. Opin. Struct. Biol. 10, 110–116 (2000)

    Article  CAS  Google Scholar 

  19. Alam, S. L. et al. Ubiquitin interactions of NZF zinc fingers. EMBO J. 23, 1411–1421 (2004)

    Article  CAS  Google Scholar 

  20. Fisher, R. D. et al. Structure and ubiquitin binding of the ubiquitin-interacting motif. J. Biol. Chem. 278, 28976–28984 (2003)

    Article  CAS  Google Scholar 

  21. Swanson, K. A., Kang, R. S., Stamenova, S. D., Hicke, L. & Radhakrishnan, I. Solution structure of Vps27 UIM-ubiquitin complex important for endosomal sorting and receptor downregulation. EMBO J. 22, 4597–4606 (2003)

    Article  CAS  Google Scholar 

  22. Sundquist, W. I. et al. Ubiquitin recognition by the human TSG101 protein. Mol. Cell 13, 783–789 (2004)

    Article  CAS  Google Scholar 

  23. Teo, H., Veprintsev, D. B. & Williams, R. L. Structural insights into ESCRT-I recognition of ubiquitinated proteins. J. Biol. Chem.in the press

  24. Tan, S. A modular polycistronic expression system for overexpressing protein complexes in Escherichia coli. Protein Expr. Purif. 21, 224–234 (2001)

    Article  CAS  Google Scholar 

  25. Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr. 55, 849–861 (1999)

    Article  CAS  Google Scholar 

  26. Terwilliger, T. C. Maximum-likelihood density modification. Acta Crystallogr. D Biol. Crystallogr. 56, 965–972 (2000)

    Article  CAS  Google Scholar 

  27. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron-density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  28. Rost, B. & Liu, J. F. The PredictProtein server. Nucleic Acids Res. 31, 3300–3304 (2003)

    Article  CAS  Google Scholar 

  29. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998)

    Article  CAS  Google Scholar 

  30. Odorizzi, G., Babst, M. & Emr, S. D. Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Cell 95, 847–858 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. P. di Fiore, M. Babst and B. Wendland for helpful discussions; M. Tabuchi for the Flag tag construct; and we acknowledge the use of the SER-CAT beamline at the APS, ANL and beamline 9-2 at the Stanford Synchrotron Radiation Laboratory. Use of the Advanced Photon Source was supported by the US Department of Energy, Basic Energy Sciences, Office of Science. The Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the US Department of Energy, is supported by the Department of Energy, Office of Biological and Environmental Research, and by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program and the National Institute of General Medical Sciences. S.D.E. is supported as an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James H. Hurley.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure 1

Structures of ESCRT-II subunits. a. Structure of Vps22. b. Structure of Vps25. c. Structure of Vps36. (JPG 38 kb)

Supplementary Figure 2

Sequence conservation in ESCRT-II. a, Structure-based alignment of Vps22 and homologues with amino acids highlighted in red (identical in all species), and orange (conserved in at least four of five species shown). b, Vps25 and homologues; c, Vps36 C-terminal domain and homologues. (JPG 384 kb)

Supplementary Figure 3

Trafficking of ubiquitinated membrane proteins by ESCRTs. ESCRT-I binds Ub-cargo through the UEV domain of Vps23 23. The second NZF domain of Vps36 binds Ub-cargo (JPG 113 kb)

Supplementary Table 1

Crystallographic data Collection, Phasing, and Refinement Statistics. (PDF 35 kb)

Supplementary Table 2

Mutational analysis of ESCRT-II assembly and function. (PDF 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hierro, A., Sun, J., Rusnak, A. et al. Structure of the ESCRT-II endosomal trafficking complex. Nature 431, 221–225 (2004). https://doi.org/10.1038/nature02914

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02914

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing