Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Active foundering of a continental arc root beneath the southern Sierra Nevada in California

Abstract

Seismic data provide images of crust–mantle interactions during ongoing removal of the dense batholithic root beneath the southern Sierra Nevada mountains in California. The removal appears to have initiated between 10 and 3 Myr ago with a Rayleigh–Taylor-type instability, but with a pronounced asymmetric flow into a mantle downwelling (drip) beneath the adjacent Great Valley. A nearly horizontal shear zone accommodated the detachment of the ultramafic root from its granitoid batholith. With continuing flow into the mantle drip, viscous drag at the base of the remaining 35-km-thick crust has thickened the crust by 7 km in a narrow welt beneath the western flank of the range. Adjacent to the welt and at the top of the drip, a V-shaped cone of crust is being dragged down tens of kilometres into the core of the mantle drip, causing the disappearance of the Moho in the seismic images. Viscous coupling between the crust and mantle is therefore apparently driving present-day surface subsidence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Study area and major results.
Figure 2: Cross-sections through the three-dimensional model of stacked receiver functions migrated into the depth domain and associated topography.
Figure 3: Synthetic stacked receiver function cross-section generated with a finite-difference wave-propagation technique for the seismic model shown beneath the image.
Figure 4: A sequential history of the foundering of the ultramafic root of the southern Sierra Nevada batholith.

Similar content being viewed by others

References

  1. Ducea, M. N. The California arc: Thick granitic batholiths, eclogitic residues, lithospheric-scale thrusting, and magmatic flare-ups. GSA Today 11, 4–10 (2001)

    Article  Google Scholar 

  2. Kay, R. W. & Kay, S. M. Creation and destruction of lower continental crust. Geol. Rundsch. 80, 259–278 (1991)

    Article  ADS  CAS  Google Scholar 

  3. Kay, R. W. & Kay, S. M. Delamination and delamination magmatism. Tectonophysics 219, 177–189 (1993)

    Article  ADS  Google Scholar 

  4. Ducea, M. N. Constraints on the bulk composition and root foundering rates of continental arcs: A California arc perspective. J. Geophys. Res. B 107, doi:10.1029/2001JB000643 (2002)

  5. Jull, M. & Kelemen, P. B. On the conditions for lower crustal convective instability. J. Geophys. Res. 106, 6423–6446 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Ducea, M. N. & Saleeby, J. B. Buoyancy sources for a large, unrooted mountain range, the Sierra Nevada, California: Evidence from xenolith thermobarometry. J. Geophys. Res. 101, 8229–8244 (1996)

    Article  ADS  CAS  Google Scholar 

  7. Ducea, M. N. & Saleeby, J. B. A case for delamination of the deep batholithic crust beneath the Sierra Nevada, California. Int. Geol. Rev. 40, 78–93 (1998)

    Article  Google Scholar 

  8. Ducea, M. N. & Saleeby, J. B. The age and origin of a thick mafic-ultramafic keel from beneath the Sierra Nevada batholith. Contrib. Mineral. Petrol. 133, 169–185 (1998)

    Article  ADS  CAS  Google Scholar 

  9. Wernicke, B. et al. Origin of high mountains in the continents: The Southern Sierra Nevada. Science 271, 190–193 (1996)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  10. Saleeby, J., Ducea, M. & Clemens-Knott, D. Production and loss of high-density batholithic root—Sierra Nevada, California. Tectonics 22, doi:10.1029/2002TC001374 (2003)

  11. Zandt, G. & Carrigan, C. R. Small-scale convective instability and upper mantle viscosity under California. Science 261, 460–463 (1993)

    Article  ADS  CAS  Google Scholar 

  12. Jones, C. H., Kanamori, H. & Roecker, S. W. Missing roots and mantle “drips”: Regional Pn and teleseismic arrival times in the southern Sierra Nevada and vicinity, California. J. Geophys. Res. 99, 4567–4601 (1994)

    Article  ADS  Google Scholar 

  13. Ruppert, S., Fliedner, M. & Zandt, G. Thin crust and active upper mantle beneath the Southern Sierra Nevada in the western United States. Tectonophysics 286, 237–252 (1998)

    Article  ADS  Google Scholar 

  14. Manley, C. R., Glazner, A. F. & Farmer, G. L. Timing of volcanism in the Sierra Nevada of California: Evidence for Pliocene delamination of the batholithic root? Geology 28, 811–814 (2000)

    Article  ADS  CAS  Google Scholar 

  15. Farmer, G. L., Glazner, A. F. & Manley, C. Did lithospheric delamination trigger late Cenozoic potassic volcanism in the Sierra Nevada, California? Geol. Soc. Am. Bull. 114, 754–768 (2002)

    Article  CAS  Google Scholar 

  16. Jones, C. H., Farmer, G. L. & Unruh, J. Tectonics of Pliocene delamination of lithosphere of the Sierra Nevada, California. Geol. Soc. Am. Bull (in the press)

  17. Dueker, K. G. & Sheehan, A. F. Mantle discontinuity structure from mid-point stacks of converted P to S waves across the Yellowstone hotspot track. J. Geophys. Res. 102, 8313–8327 (1997)

    Article  ADS  Google Scholar 

  18. Kind, R. et al. Comprehensive seismic images of the crust and upper mantle beneath Tibet. Science 298, 1219–1222 (2002)

    Article  ADS  CAS  Google Scholar 

  19. Gilbert, H. J., Sheehan, A. F., Dueker, K. G. & Molnar, P. Receiver functions in the western United States, with implications for upper mantle structure and dynamics. J. Geophys. Res. B 108, doi:10.1029/2001JB001194 (2003)

  20. Fliedner, M., Klemperer, S. L. & Christensen, N. I. Three-dimensional seismic model of the Sierra Nevada arc, California, and its implications for crustal and upper mantle composition. J. Geophys. Res. 105, 10899–10921 (2000)

    Article  ADS  Google Scholar 

  21. Zhu, L. & Kanamori, H. Moho depth variation in southern California from teleseismic receiver functions. J. Geophys. Res. 105, 2969–2980 (2000)

    Article  ADS  Google Scholar 

  22. Bostock, M. G., Hyndman, R. D., Rondenay, S. & Peacock, S. M. An inverted continental Moho and serpentization of the forearc mantle. Nature 417, 536–538 (2002)

    Article  ADS  CAS  Google Scholar 

  23. Jones, C. H. & Phinney, R. A. Seismic structure of the lithosphere from teleseismic converted arrivals observed at small arrays in the southern Sierra Nevada and vicinity, California. J. Geophys. Res. 103, 10065–10090 (1998)

    Article  ADS  Google Scholar 

  24. Saleeby, J. & Foster, Z. Topographic response to mantle lithosphere removal in the southern Sierra Nevada region, California. Geology 37, 245–248 (2004)

    Article  ADS  Google Scholar 

  25. Liu, M. & Shen, Y. Q. Sierra Nevada uplift: A ductile link to mantle upwelling under the basin and range province. Geology 26, 299–302 (1998)

    Article  ADS  Google Scholar 

  26. Furlong, K. P. & Govers, R. Ephemeral crustal thickening at a triple junction: The Mendocino crustal conveyor. Geology 27, 127–130 (1998)

    Article  ADS  Google Scholar 

  27. Neil, E. A. & Houseman, G. A. Rayleigh-Taylor instability of the upper mantle and its role in intraplate orogeny. Geophys. J. Int. 138, 89–107 (1999)

    Article  ADS  Google Scholar 

  28. Houseman, G., Neil, E. A. & Kohler, M. D. Lithospheric instability beneath the Transverse Ranges of California. J. Geophys. Res. 105, 16237–16250 (2000)

    Article  ADS  Google Scholar 

  29. Schott, B. & Schmeling, H. Delamination and detachment of a lithospheric root. Tectonophysics 296, 225–247 (1998)

    Article  ADS  Google Scholar 

  30. Pysklywec, R. N., Beaumont, C. & Fullsack, P. Lithospheric deformation during the early stages of continental collision: Numerical experiments and comparison with South Island, New Zealand. J. Geophys. Res. B 107, doi:10.1029/2001JB000252 (2002)

  31. Bindschadler, D. L. & Parmentier, E. M. Mantle flow tectonics: The influence of a ductile lower crust and implications for the formation of topographic uplands on Venus. J. Geophys. Res. 95, 21329–21344 (1990)

    Article  ADS  Google Scholar 

  32. Davis, G. H. & Reynolds, S. J. Structural Geology of Rocks and Regions 2nd edn (Wiley & Sons, New York, 1996)

    Google Scholar 

  33. Zimmerman, M. E. & Kohlstedt, D. L. Melt segregation and LPO in anorthite-basalt deformed in torsion. Eos 84 (Fall Meet. Suppl.), S22E–06 (2003)

    Google Scholar 

  34. Wernicke, B. P. in The Geology of North America Vol. G-3, The Cordilleran Orogen: Conterminous US (eds Burchfiel, B. C., Lipman, P. W. & Zoback, M. L.) 553–581 (Geological Society of America, Boulder, Colorado, 1992)

    Google Scholar 

  35. Houseman, G. A. & Molnar, P. Gravitational (Rayleigh–Taylor) instability of a layer with non-linear viscosity and convective thinning of continental lithosphere. J. Geophys. Res. 128, 125–150 (1997)

    Google Scholar 

  36. Schott, B., Yuen, D. A. & Schmeling, H. Viscous heating in heterogeneous media as applied to the thermal interaction between crust and mantle. Geophys. Res. Lett. 26, 513–516 (1999)

    Article  ADS  Google Scholar 

  37. Park, S. K., Hirasuna, B., Jiracek, G. R. & Kinn, C. L. Magnetotelluric evidence of lithospheric mantle thinning beneath the southern Sierra Nevada. J. Geophys. Res. 101, 16241–16255 (1996)

    Article  ADS  CAS  Google Scholar 

  38. Saltus, R. W. & Lachenbruch, A. H. Thermal evolution of the Sierra Nevada: Tectonic implications of new heat flow data. Tectonics 10, 325–344 (1991)

    Article  ADS  Google Scholar 

  39. Dumitru, T. A. Subnormal Cenozoic geothermal gradients in the extinct Sierra Nevada magmatic arc: Consequences of Laramide and post-Laramide shallow-angle subduction. J. Geophys. Res. 95, 4925–4942 (1990)

    Article  ADS  Google Scholar 

  40. House, M. A., Farley, K. F., Wernicke, B. P. & Dumitru, T. A. Cenozoic thermal evolution of the central Sierra Nevada from (U–Th)/He thermochronology. Earth Planet. Sci. Lett. 151, 167–179 (1997)

    Article  ADS  CAS  Google Scholar 

  41. Dickinson, W. R. The Basin and Range Province as a composite extensional domain. Int. Geol. Rev. 44, 1–38 (2002)

    Article  Google Scholar 

  42. Atwater, T. & Stock, J. Pacific-North America plate tectonics of the Neogene southwestern United States: An update. Int. Geol. Rev. 40, 375–402 (1998)

    Article  Google Scholar 

  43. Molnar, P. & Jones, C. H. A test of laboratory-based rheological parameters of olivine from an analysis of late Cenozoic convective removal of mantle lithosphere beneath the Sierra Nevada, California, USA. Geophys. J. Int. 156(3), 555–564 (2004)

    Article  ADS  Google Scholar 

  44. Zandt, G. The southern Sierra Nevada drip and the mantle wind direction beneath the southwestern United States. Int. Geol. Rev. 45, 213–224 (2003)

    Article  Google Scholar 

  45. Furlong, K. P., Lock, J., Guzofski, C., Whitlock, J. & Benz, H. in The Lithosphere of Western North America and its Geophysical Characterization, The George A. Thompson Volume (eds Klemperer, S. L. & Ernst, W. G.) 92–104 (International Book Series, Vol. 7, Bellwether Publishing/Geological Society of America, Boulder, Colorado, 2003)

    Google Scholar 

  46. Hartog, R. & Schwartz, S. Y. Subduction induced strain in the upper mantle east of the Mendocino triple junction, California. J. Geophys. Res. 105, 7909–7930 (2000)

    Article  ADS  Google Scholar 

  47. Boyd, O. S., Jones, C. H. & Sheehan, A. F. Foundering lithosphere imaged beneath the southern Sierra Nevada, California, USA. Science 305, 660–662 (2004)

    Article  ADS  CAS  Google Scholar 

  48. Lange, R. A., Carmichael, I. S. E. & Renne, P. R. Potassic volcanism near the Mono basin, California: Evidence for high water and oxygen fugacities inherited from subduction. Geology 21, 949–952 (1993)

    Article  ADS  CAS  Google Scholar 

  49. Saleeby, J. B. Segmentation of the Laramide slab—Evidence from the southern Sierra Nevada region. Geol. Soc. Am. Bull. 115, 655–668 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

G.Z. thanks G. Gehrels, P. Kapp and B. Hacker for comments on preliminary interpretations and manuscripts.Authors' contributions G.Z., H.G., T.J.O. and C.H.J. cooperated on the seismology analysis and interpretation. M.D. and J.S. provided the geologic and tectonic context. C.H.J. led the PASSCAL deployment to collect the data. G.Z. wrote the Article with contributions from all the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Zandt.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Discussion

This discussion further expands on the processes related to the removal of the batholithic root beneath the Sierra Nevada. Topics include crustal anisotropy, crustal imaging resolution, and alternative basal shear-zone models. (PDF 855 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zandt, G., Gilbert, H., Owens, T. et al. Active foundering of a continental arc root beneath the southern Sierra Nevada in California. Nature 431, 41–46 (2004). https://doi.org/10.1038/nature02847

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02847

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing