Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Argos inhibits epidermal growth factor receptor signalling by ligand sequestration

Abstract

The epidermal growth factor receptor (EGFR) has critical functions in development and in many human cancers1,2,3. During development, the spatial extent of EGFR signalling is regulated by feedback loops comprising both well-understood activators and less well-characterized inhibitors3,4. In Drosophila melanogaster the secreted protein Argos functions as the only known extracellular inhibitor of EGFR5, with clearly identified roles in multiple stages of development3. Argos is only expressed when the Drosophila EGFR (DER) is activated at high levels6, and downregulates further DER signalling. Although there is ample genetic evidence that Argos inhibits DER activation, the biochemical mechanism has not been established. Here we show that Argos inhibits DER signalling without interacting directly with the receptor, but instead by sequestering the DER-activating ligand Spitz. Argos binds tightly to the EGF motif of Spitz and forms a 1:1 (Spitz:Argos) complex that does not bind DER in vitro or at the cell surface. Our results provide an insight into the mechanism of Argos function, and suggest new strategies for EGFR inhibitor design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quantitative analysis of Spitz/Argos interactions.
Figure 2: Argos sequesters Spitz away from DER.
Figure 3: Argos does not displace Spitz pre-bound to cell surface DER.

Similar content being viewed by others

References

  1. Jorissen, R. N. et al. Epidermal growth factor receptor: mechanisms of activation and signalling. Exp. Cell Res. 284, 31–53 (2003)

    Article  CAS  Google Scholar 

  2. Yarden, Y. & Sliwkowski, M. X. Untangling the ErbB signalling network. Nature Rev. Mol. Cell Biol. 2, 127–137 (2001)

    Article  CAS  Google Scholar 

  3. Shilo, B. Z. Signaling by the Drosophila epidermal growth factor receptor pathway during development. Exp. Cell Res. 284, 140–149 (2003)

    Article  CAS  Google Scholar 

  4. Wiley, H. S., Shvartsman, S. Y. & Lauffenburger, D. A. Computational modeling of the EGF-receptor system: a paradigm for systems biology. Trends Cell Biol. 12, 43–50 (2003)

    Article  Google Scholar 

  5. Schweitzer, R., Howes, R., Smith, R., Shilo, B. Z. & Freeman, M. Inhibition of Drosophila EGF receptor activation by the secreted protein Argos. Nature 376, 699–702 (1995)

    Article  ADS  CAS  Google Scholar 

  6. Golembo, M., Schweitzer, R., Freeman, M. & Shilo, B. Z. Argos transcription is induced by the Drosophila EGF receptor pathway to form an inhibitory feedback loop. Development 122, 223–230 (1996)

    CAS  PubMed  Google Scholar 

  7. Freeman, M., Klambt, C., Goodman, C. S. & Rubin, G. M. The argos gene encodes a diffusible factor that regulates cell fate decisions in the Drosophila eye. Cell 69, 963–975 (1992)

    Article  CAS  Google Scholar 

  8. Wasserman, J. D. & Freeman, M. An autoregulatory cascade of EGF receptor signaling patterns the Drosophila egg. Cell 95, 355–364 (1998)

    Article  CAS  Google Scholar 

  9. Jin, M. H., Sawamoto, K., Ito, M. & Okano, H. The interaction between the Drosophila secreted protein argos and the epidermal growth factor receptor inhibits dimerization of the receptor and binding of secreted spitz to the receptor. Mol. Cell. Biol. 20, 2098–2107 (2000)

    Article  CAS  Google Scholar 

  10. Vinos, J. & Freeman, M. Evidence that Argos is an antagonistic ligand of the EGF receptor. Oncogene 19, 3560–3562 (2000)

    Article  CAS  Google Scholar 

  11. Ferguson, K. M. et al. EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization. Mol. Cell 11, 507–517 (2003)

    Article  CAS  Google Scholar 

  12. Howes, R., Wasserman, J. D. & Freeman, M. In vivo analysis of Argos structure-function. Sequence requirements for inhibition of the Drosophila epidermal growth factor receptor. J. Biol. Chem. 273, 4275–4281 (1998)

    Article  CAS  Google Scholar 

  13. Duan, C. Beyond carrier proteins: Specifying the cellular responses to IGF signals: roles of IGF-binding proteins. J. Endocrinol. 175, 41–54 (2002)

    Article  CAS  Google Scholar 

  14. Groppe, J. et al. Structural basis of BMP signalling inhibition by the cystine knot protein Noggin. Nature 420, 636–642 (2002)

    Article  ADS  CAS  Google Scholar 

  15. Mattoon, D., Klein, P., Lemmon, M. A., Lax, I. & Schlessinger, J. The tethered configuration of the EGF receptor extracellular domain exerts only a limited control of receptor function. Proc. Natl Acad. Sci. USA 101, 923–928 (2004)

    Article  ADS  CAS  Google Scholar 

  16. Schlessinger, J., Shechter, Y., Willingham, M. C. & Pastan, I. Direct visualization of binding, aggregation, and internalization of insulin and epidermal growth factor on living fibroblastic cells. Proc. Natl Acad. Sci. USA 75, 2659–2663 (1978)

    Article  ADS  CAS  Google Scholar 

  17. Verveer, P. J., Wouters, F. S., Reynolds, A. R. & Bastiaens, P. I. Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane. Science 290, 1567–1570 (2000)

    Article  ADS  CAS  Google Scholar 

  18. Paine-Saunders, S., Viviano, B. L., Economides, A. N. & Saunders, S. Heparan sulfate proteoglycans retain Noggin at the cell surface: a potential mechanism for shaping bone morphogenetic protein gradients. J. Biol. Chem. 277, 2089–2096 (2002)

    Article  CAS  Google Scholar 

  19. Powell, A. K., Yates, E. A., Fernig, D. G. & Turnbull, J. E. Interactions of heparin/heparan sulfate with proteins: appraisal of structural factors and experimental approaches. Glycobiology 14, 17R–30R (2004)

    Article  CAS  Google Scholar 

  20. Kramer, K. L. & Yost, H. J. Heparan sulfate core proteins in cell–cell signaling. Annu. Rev. Genet. 37, 461–484 (2003)

    Article  CAS  Google Scholar 

  21. Arend, W. P., Malyak, M., Guthridge, C. J. & Gabay, C. Interleukin-1 receptor antagonist: role in biology. Annu. Rev. Immunol. 16, 27–55 (1998)

    Article  CAS  Google Scholar 

  22. Mantovani, A., Locati, M., Vecchi, A., Sozzani, S. & Allavena, P. Decoy receptors: a strategy to regulate inflammatory cytokines and chemokines. Trends Immunol. 22, 328–336 (2001)

    Article  CAS  Google Scholar 

  23. Barkai, N. & Shilo, B. Z. Modeling pattern formation: counting to two in the Drosophila egg. Curr. Biol. 12, R493–R495 (2002)

    Article  CAS  Google Scholar 

  24. Shvartsman, S. Y., Muratov, C. B. & Lauffenburger, D. A. Modeling and computational analysis of EGF receptor-mediated cell communication in Drosophila oogenesis. Development 129, 2577–2589 (2002)

    CAS  PubMed  Google Scholar 

  25. Salomon, D. S., Brandt, R., Ciardiello, F. & Normanno, N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit. Rev. Oncol. Hematol. 19, 183–232 (1995)

    Article  CAS  Google Scholar 

  26. Ferguson, K. M., Darling, P. J., Mohan, M. J., Macatee, T. L. & Lemmon, M. A. Extracellular domains drive homo- but not hetero-dimerization of erbB receptors. EMBO J. 19, 4632–4643 (2000)

    Article  CAS  Google Scholar 

  27. Schweitzer, R., Shaharabany, M., Seger, R. & Shilo, B. Z. Secreted Spitz triggers the DER signaling pathway and is a limiting component in embryonic ventral ectoderm determination. Genes Dev. 9, 1518–1529 (1995)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Duffy, K. Ferguson, P. Carroll, G. Van Duyne and members of the Lemmon and Shvartsman laboratories for valuable discussions; T. Schüpbach and N. Perrimon for providing cDNAs. This work was supported by grants from the NIH (to M.A.L.) and NSF (S.Y.S.), by NIH training grant support (to D.E.K. and V.M.N.), and by an NSF graduate research fellowship (G.T.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Lemmon.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure 1

SPR binding curves showing that the Argos/Spitz interaction requires only the EGF motif of Spitz and the C-terminal 225 amino acids of Argos. (DOC 365 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, D., Nappi, V., Reeves, G. et al. Argos inhibits epidermal growth factor receptor signalling by ligand sequestration. Nature 430, 1040–1044 (2004). https://doi.org/10.1038/nature02840

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02840

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing