Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Magnetic phase control by an electric field

Abstract

The quest for higher data density in information storage is motivating investigations into approaches for manipulating magnetization by means other than magnetic fields. This is evidenced by the recent boom in magnetoelectronics and ‘spintronics’1, where phenomena such as carrier effects in magnetic semiconductors2 and high-correlation effects in colossal magnetoresistive compounds3 are studied for their device potential. The linear magnetoelectric effect—the induction of polarization by a magnetic field and of magnetization by an electric field—provides another route for linking magnetic and electric properties. It was recently discovered that composite materials and magnetic ferroelectrics exhibit magnetoelectric effects that exceed previously known effects4,5 by orders of magnitude6,7,8,9,10, with the potential to trigger magnetic or electric phase transitions. Here we report a system whose magnetic phase can be controlled by an external electric field: ferromagnetic ordering in hexagonal HoMnO3 is reversibly switched on and off by the applied field via magnetoelectric interactions. We monitor this process using magneto-optical techniques and reveal its microscopic origin by neutron and X-ray diffraction. From our results, we identify basic requirements for other candidate materials to exhibit magnetoelectric phase control.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnetic structure of hexagonal HoMnO3.
Figure 2: Dependence of magneto-optical properties of HoMnO3 on electric field.
Figure 3: Spatially resolved Faraday rotation.
Figure 4: Microscopic manifestation of the magnetoelectric effect.

Similar content being viewed by others

References

  1. Prinz, G. A. Magnetoelectronics applications. J. Magn. Magn. Mater. 200, 57–68 (1999)

    Article  ADS  CAS  Google Scholar 

  2. Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000)

    Article  ADS  CAS  Google Scholar 

  3. Asamitsu, A., Tomioka, Y., Kuwahara, H. & Tokura, Y. Current switching of resistive states in magnetoresistive manganites. Nature 388, 50–52 (1997)

    Article  ADS  CAS  Google Scholar 

  4. O'Dell, T. H. The Electrodynamics of Magneto-electric Media, (North-Holland, Amsterdam, 1970)

    Google Scholar 

  5. Schmid, H. On a magnetoelectric classification of materials. Int. J. Magn. 4, 337–361 (1973)

    CAS  Google Scholar 

  6. Nan, C. W. et al. A three-phase magnetoelectric composite of piezoelectric ceramics, rare-earth iron alloys, and polymer. Appl. Phys. Lett. 81, 3831–3833 (2002)

    Article  ADS  CAS  Google Scholar 

  7. Srinivasan, G., Rasmussen, E. T., Levin, B. J. & Hayes, R. Magnetoelectric effects in bilayers and multilayers of magnetoresistive and piezoelectric perovskite oxides. Phys. Rev. B 65, 134402 (2002)

    Article  ADS  Google Scholar 

  8. Kimura, T. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003)

    Article  ADS  CAS  Google Scholar 

  9. Van Aken, B. B., Palstra, T. T. M., Filippetti, A. & Spaldin, N. A. Origin of ferroelectricity in magnetoelectric YMnO3 . Nature Mater. 3, 164–170 (2004)

    Article  ADS  CAS  Google Scholar 

  10. Hur, N. et al. Electric polarization reversal and memory in multiferroic material induced by magnetic fields. Nature 429, 392–395 (2004)

    Article  ADS  CAS  Google Scholar 

  11. Coeuré, P., Guinet, F., Peuzin, J. C., Buisson, G. & Bertaut, E. F. in Proc. Int. Meeting on Ferroelectricity (ed. Dvorák, V.) 332–340 (Institute of Physics of the Czechoslovak Academy of Sciences, Prague, 1996)

    Google Scholar 

  12. Fiebig, M. et al. Determination of the magnetic symmetry of hexagonal manganites by second harmonic generation. Phys. Rev. Lett. 84, 5620–5623 (2000)

    Article  ADS  CAS  Google Scholar 

  13. Sugie, H., Iwata, N. & Kohn, K. Magnetic ordering of rare earth ions and magnetic-electric interaction of hexagonal RMnO3 (R = Ho, Er, Yb or Lu). J. Phys. Soc. Jpn 71, 1558–1564 (2002)

    Article  ADS  CAS  Google Scholar 

  14. van Aken, B. B. Structural Response to Electronic Transitions in Hexagonal and Ortho-Manganites. Thesis, Reiksuniv. Groningen (2001)

    Google Scholar 

  15. Fiebig, M., Lottermoser, Th. & Pisarev, R. V. Spin-rotation phenomena and magnetic phase diagrams of hexagonal RMnO3 . J. Appl. Phys. 93, 8194–8197 (2003)

    Article  ADS  CAS  Google Scholar 

  16. Leute, S., Lottermoser, Th. & Fröhlich, D. Nonlinear spatially resolved phase spectroscopy. Opt. Lett. 24, 1520–1522 (1999)

    Article  ADS  CAS  Google Scholar 

  17. Maichle, J. K., Ihringer, J. & Prandl, W. Simultaneous structure refinement of neutron, synchrotron and x-ray powder diffraction patterns. J. Appl. Crystallogr. 21, 22–28 (1998)

    Article  Google Scholar 

  18. Ihringer, J. A quantitative measure for the goodness of fit in profile refinements with more than 20 degrees of freedom. J. Appl. Crystallogr. 28, 618–619 (1995)

    Article  CAS  Google Scholar 

  19. Rebmann, C., Ritter, H. & Ihringer, J. Standard uncertainty of angular positions and statistical quality of step-scan intensity data. Acta Crystallogr. A 54, 225–231 (1998)

    Article  Google Scholar 

  20. Fiebig, M., Fröhlich, D., Lottermoser, Th. & Maat, M. Probing of ferroelectric surface and bulk domains in ferroelectric RMnO3 (R = Y, Ho) by second harmonic generation. Phys. Rev. B 66, 144102 (2002)

    Article  ADS  Google Scholar 

  21. Fox, D. L., Tilley, D. R., Scott, J. F. & Guggenheim, H. J. Magnetoelectric phenomena in BaMnF4 and BaMn0.99Co0.01F4 . Phys. Rev. B 21, 2926–2936 (1980)

    Article  ADS  CAS  Google Scholar 

  22. Scott, J. F. Phase transitions in BaMnF4 . Rep. Prog. Phys. 42, 1055–1084 (1979)

    Article  ADS  CAS  Google Scholar 

  23. Ascher, E., Riedel, H., Schmid, H. & Stössel, H. Some properties of ferromagnetic nickel-iodine boracite Ni3B7O13I. J. Appl. Phys. 37, 1404–1405 (1966)

    Article  ADS  CAS  Google Scholar 

  24. Fiebig, M., Degenhardt, C. & Pisarev, R. V. Interaction of frustrated magnetic sublattices in ErMnO3 . Phys. Rev. Lett. 88, 027203 (2002)

    Article  ADS  CAS  Google Scholar 

  25. Kritayakirana, K., Berger, P. & Jones, R. V. Optical spectra of ferroelectric-antiferromagnetic rare earth manganates. Opt. Commun. 1, 95–98 (1969)

    Article  ADS  CAS  Google Scholar 

  26. Dzyaloshinskii, I. E. Thermodynamic theory of ‘weak’ ferromagnetism in antiferromagnetic substances. Sov. Phys. JETP 5, 1259–1272 (1957)

    MATH  Google Scholar 

  27. Fiebig, M., Eremenko, V. & Chupis, I. (eds) Magnetoelectric Interaction Phenomena in Crystals (Kluwer, Dordrecht, 2004)

  28. Zheng, H. et al. Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 303, 661–663 (2004)

    Article  ADS  CAS  Google Scholar 

  29. Saxena, S. S. et al. Superconductivity on the border of itinerant-electron ferromagnetism in UGe2 . Nature 406, 587–591 (2000)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Kohn and K. Hagdorn for samples, and the DFG and the BMBF for financial support. M. F. thanks T. Elsässer for continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Fiebig.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lottermoser, T., Lonkai, T., Amann, U. et al. Magnetic phase control by an electric field. Nature 430, 541–544 (2004). https://doi.org/10.1038/nature02728

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02728

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing