Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Neurons compute internal models of the physical laws of motion

Abstract

A critical step in self-motion perception and spatial awareness is the integration of motion cues from multiple sensory organs that individually do not provide an accurate representation of the physical world. One of the best-studied sensory ambiguities is found in visual processing, and arises because of the inherent uncertainty in detecting the motion direction of an untextured contour moving within a small aperture1,2,3,4. A similar sensory ambiguity arises in identifying the actual motion associated with linear accelerations sensed by the otolith organs in the inner ear5,6. These internal linear accelerometers respond identically during translational motion (for example, running forward) and gravitational accelerations experienced as we reorient the head relative to gravity (that is, head tilt). Using new stimulus combinations, we identify here cerebellar and brainstem motion-sensitive neurons that compute a solution to the inertial motion detection problem. We show that the firing rates of these populations of neurons reflect the computations necessary to construct an internal model representation of the physical equations of motion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neural responses that encode either the net gravito-inertial acceleration or the inertial component of linear acceleration.
Figure 2: Summary of peak firing rates during (a) tilt-only and (b, c) the combined protocols as a function of the respective responses during translation-only motion.
Figure 3: Cerebellar FN neurons more closely encode the inertial component of acceleration than does the brainstem VN cell population.
Figure 4: An internal model of equation (3) accounts best for the modulation in neural firing rates.

Similar content being viewed by others

References

  1. Shimojo, S., Silverman, G. H. & Nakayama, K. Occlusion and the solution to the aperture problem for motion. Vision Res. 29, 619–626 (1989)

    Article  CAS  Google Scholar 

  2. Adelson, E. H. & Movshon, J. A. Phenomenal coherence of moving visual patterns. Nature 300, 523–525 (1982)

    Article  ADS  CAS  Google Scholar 

  3. Movshon, J. A., Adelson, E. H., Gizzi, M. S. & Newsome, W. T. in Pattern Recognition Mechanisms: Pontificiae Academiae Scientiarum Scripta Varia (eds Chagas, C., Gattass, R. & Gross, C.) Vol. 54, 117–151 (Vatican, Rome, 1985)

    Book  Google Scholar 

  4. Pack, C. C. & Born, R. T. Temporal dynamics of a neural solution to the aperture problem in visual area MT of macaque brain. Nature 409, 1040–1042 (2001)

    Article  ADS  CAS  Google Scholar 

  5. Fernández, C. & Goldberg, J. M. Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugal force. J. Neurophysiol. 39, 970–984 (1976)

    Article  Google Scholar 

  6. Angelaki, D. E. & Dickman, J. D. Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses. J. Neurophysiol. 84, 2113–2132 (2000)

    Article  CAS  Google Scholar 

  7. Einstein, A. Uber das Relativitätsprinzip und die aus demselben gezogenen Folgerungen. Jber. Radioakt. 4, 411–462 (1908)

    Google Scholar 

  8. Angelaki, D. E., McHenry, M. Q., Dickman, J. D., Newlands, S. D. & Hess, B. J. M. Computation of inertial motion: neural strategies to resolve ambiguous otolith information. J. Neurosci. 19, 316–327 (1999)

    Article  CAS  Google Scholar 

  9. Merfeld, D. M., Zupan, L. H. & Peterka, R. J. Humans use internal models to estimate gravity and linear acceleration. Nature 398, 615–618 (1999)

    Article  ADS  CAS  Google Scholar 

  10. Merfeld, D. M. & Zupan, L. H. Neural processing of gravitoinertial cues in humans. III. Modeling tilt and translation responses. J. Neurophysiol. 87, 819–833 (2002)

    Article  CAS  Google Scholar 

  11. Zupan, L. H., Peterka, R. J. & Merfeld, D. M. Neural processing of gravito-inertial cues in humans. I. Influence of the semicircular canals following post-rotatory tilt. J. Neurophysiol. 84, 2001–2015 (2000)

    Article  CAS  Google Scholar 

  12. Green, A. M. & Angelaki, D. E. Resolution of sensory ambiguities for gaze stabilization requires a second neural integrator. J. Neurosci. 23, 9265–9275 (2003)

    Article  CAS  Google Scholar 

  13. Green, A. M. & Angelaki, D. E. An integrative neural network for detecting inertial motion and head orientation. J. Neurophysiol. Advance online publication, 31 March 2004 (doi: 10.1152/jn.01234.2003)

  14. Goldstein, H. Classical Mechanics (Addison–Wesley, Reading, Massachusetts, 1980)

    MATH  Google Scholar 

  15. Carleton, S. C. & Carpenter, M. B. Distribution of primary vestibular fibers in the brainstem and cerebellum of the monkey. Brain Res. 294, 281–298 (1984)

    Article  CAS  Google Scholar 

  16. Newlands, S. D. et al. Central projections of the saccular and utricular nerves in macaques. J. Comp. Neurol. 466, 31–47 (2003)

    Article  Google Scholar 

  17. Kotchabhakdi, N. & Walberg, F. Primary vestibular afferent projections to the cerebellum as demonstrated by retrograde axonal transport of horseradish peroxidase. Brain Res. 142, 142–146 (1978)

    Article  CAS  Google Scholar 

  18. Angaut, P. & Bowsher, D. Ascending projections of the medial cerebellar (fastigial) nucleus: an experimental study in the cat. Brain Res. 24, 49–68 (1970)

    Article  CAS  Google Scholar 

  19. Asamura, C., Thach, W. T. & Jones, E. G. Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey. Brain Res. Rev. 5, 237–265 (1983)

    Article  Google Scholar 

  20. Batton, R. R., Jayaraman, A., Ruggiero, D. & Carpenter, M. B. Fastigial efferent projections in the monkey: an autoradiographic study. J. Comp. Neurol. 174, 281–305 (1977)

    Article  Google Scholar 

  21. Kalil, K. Projections of the cerebellar and dorsal column nuclei upon the thalamus of the rhesus monkey. J. Comp. Neurol. 195, 25–50 (1981)

    Article  CAS  Google Scholar 

  22. Lang, W., Buttner-Ennever, J. A. & Buttner, U. Vestibular projections to the monkey thalamus: An autoradiographic study. Brain Res. 177, 3–17 (1979)

    Article  CAS  Google Scholar 

  23. Newlands, S. D., Shaikh, A. G., Green, A. M., Dickman, J. D., Angelaki, D. E. Semicircular canal inactivation abolishes tilt-translation discrimination property of fastigial and vestibular nuclei neurons. (Abstract viewer/itinerary planner, Society for Neuroscience, Washington DC, 2004)

  24. Goldberg, J. M. & Fernandez, C. Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J. Neurophysiol. 34, 661–675 (1971)

    Article  Google Scholar 

  25. Dickman, J. D. & Angelaki, D. E. Vestibular convergence patterns in vestibular nuclei neurons of alert primates. J. Neurophysiol. 88, 3518–3533 (2002)

    Article  Google Scholar 

  26. Gribble, P. L. & Scott, S. H. Overlap of internal models in motor cortex for mechanical loads during reaching. Nature 417, 938–941 (2002)

    Article  ADS  CAS  Google Scholar 

  27. Kawato, M. Internal models for control and trajectory planning. Curr. Opin. Neurobiol. 6, 718–727 (1999)

    Article  Google Scholar 

  28. Padoa-Schioppa, C., Li, C.-S. R. & Bizzi, E. Neuronal correlates of kinematics-to-dynamics transformation in the supplementary motor area. Neuron 36, 751–765 (2002)

    Article  CAS  Google Scholar 

  29. Angelaki, D. E. & Dickman, J. D. Premotor neurons encode torsional eye velocity during smooth-pursuit eye movements. J. Neurosci. 23, 2971–2979 (2003)

    Article  CAS  Google Scholar 

  30. Draper, N. R. & Smith, H. Applied Regression Analysis (J. Wiley, Sons, Inc., New York, 1998)

    Book  Google Scholar 

Download references

Acknowledgements

The work was supported by grants from NIH and NASA. We thank E. Klier, C. Fetsch, G. DeAngelis and L. Snyder for aid in preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dora E. Angelaki.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Information

This file contains two supplemental figures that provide further theoretical and experimental details. Supplemental Fig. 1 shows a schematic representation of the computations to estimate translational acceleration for the motion stimuli used in the manuscript. Supplemental Fig. 2 shows additional data about the phase distribution of the populations of neurons. (DOC 188 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angelaki, D., Shaikh, A., Green, A. et al. Neurons compute internal models of the physical laws of motion. Nature 430, 560–564 (2004). https://doi.org/10.1038/nature02754

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02754

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing