Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A membrane-access mechanism of ion channel inhibition by voltage sensor toxins from spider venom

Abstract

Venomous animals produce small protein toxins that inhibit ion channels with high affinity. In several well-studied cases the inhibitory proteins are water-soluble and bind at a channel's aqueous-exposed extracellular surface1,2,3,4. Here we show that a voltage-sensor toxin (VSTX1) from the Chilean Rose Tarantula (Grammostola spatulata) reaches its target by partitioning into the lipid membrane. Lipid membrane partitioning serves two purposes: to localize the toxin in the membrane where the voltage sensor resides and to exploit the free energy of partitioning to achieve apparent high-affinity inhibition. VSTX1, small hydrophobic poisons and anaesthetic molecules reveal a common theme of voltage sensor inhibition through lipid membrane access. The apparent requirement for such access is consistent with the recent proposal that the sensor in voltage-dependent K+ channels is located at the membrane–protein interface5,6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: VSTX1 binds to the KvAP channel with high affinity in lipid membranes and low affinity in detergent micelles.
Figure 2: VSTX1 binds to lipid membranes.
Figure 3: Increase in tryptophan fluorescence of VSTX1 on partitioning into membranes.
Figure 4: Hydrophobic face of voltage sensor toxins is conserved.

Similar content being viewed by others

References

  1. Miller, C., Moczydlowski, E., Latorre, R. & Phillips, M. Charybdotoxin, a protein inhibitor of single Ca2+-activated K+ channels from mammalian skeletal muscle. Nature 313, 316–318 (1985)

    Article  ADS  CAS  Google Scholar 

  2. Hidalgo, P. & MacKinnon, R. Revealing the architecture of a K+ channel pore through mutant cycles with a peptide inhibitor. Science 268, 307–310 (1995)

    Article  ADS  CAS  Google Scholar 

  3. Imredy, J. P., Chen, C. & MacKinnon, R. A snake toxin inhibitor of inward rectifier potassium channel ROMK1. Biochemistry 37, 14867–14874 (1998)

    Article  CAS  Google Scholar 

  4. Hugues, M., Romey, G., Duval, D., Vincent, J. P. & Lazdunski, M. Apamin as a selective blocker of the calcium-dependent potassium channel in neuroblastoma cells: voltage-clamp and biochemical characterization of the toxin receptor. Proc. Natl Acad. Sci. USA 79, 1308–1312 (1982)

    Article  ADS  CAS  Google Scholar 

  5. Jiang, Y., Ruta, V., Chen, J., Lee, A. & MacKinnon, R. The principle of gating charge movement in a voltage-dependent K+ channel. Nature 423, 42–48 (2003)

    Article  ADS  CAS  Google Scholar 

  6. Jiang, Y. et al. X-ray structure of a voltage-dependent K+ channel. Nature 423, 33–41 (2003)

    Article  ADS  CAS  Google Scholar 

  7. Miller, C. Diffusion-controlled binding of a peptide neurotoxin to its K+ channel receptor. Biochemistry 29, 5320–5325 (1990)

    Article  CAS  Google Scholar 

  8. Escobar, L., Root, M. J. & MacKinnon, R. Influence of protein surface charge on the bimolecular kinetics of a potassium channel peptide inhibitor. Biochemistry 32, 6982–6987 (1993)

    Article  CAS  Google Scholar 

  9. Goldstein, S. A., Pheasant, D. J. & Miller, C. The charybdotoxin receptor of a Shaker K+ channel: peptide and channel residues mediating molecular recognition. Neuron 12, 1377–1388 (1994)

    Article  CAS  Google Scholar 

  10. Ranganathan, R., Lewis, J. H. & MacKinnon, R. Spatial localization of the K+ channel selectivity filter by mutant cycle-based structure analysis. Neuron 16, 131–139 (1996)

    Article  CAS  Google Scholar 

  11. Swartz, K. J. & MacKinnon, R. Hanatoxin modifies the gating of a voltage-dependent K+ channel through multiple binding sites. Neuron 18, 665–673 (1997)

    Article  CAS  Google Scholar 

  12. Swartz, K. J. & MacKinnon, R. Mapping the receptor site for hanatoxin, a gating modifier of voltage-dependent K+ channels. Neuron 18, 675–682 (1997)

    Article  CAS  Google Scholar 

  13. Swartz, K. J. & MacKinnon, R. An inhibitor of the Kv2.1 potassium channel isolated from the venom of a Chilean tarantula. Neuron 15, 941–949 (1995)

    Article  CAS  Google Scholar 

  14. Ruta, V., Jiang, Y., Lee, A., Chen, J. & MacKinnon, R. Functional analysis of an archeabacterial voltage-dependent K+ channel. Nature 422, 180–185 (2003)

    Article  ADS  CAS  Google Scholar 

  15. Winterfield, J. R. & Swartz, K. J. A hot spot for the interaction of gating modifier toxins with voltage-dependent ion channels. J. Gen. Physiol. 116, 637–644 (2000)

    Article  CAS  Google Scholar 

  16. Li-Smerin, Y. & Swartz, K. J. Gating modifier toxins reveal a conserved structural motif in voltage- gated Ca2+ and K+ channels. Proc. Natl Acad. Sci. USA 95, 8585–8589 (1998)

    Article  ADS  CAS  Google Scholar 

  17. Lee, C. W. et al. Solution Structure and Functional Characterization of SGTx1, a Modifier of Kv2.1 Channel Gating. Biochemistry 43, 890–897 (2004)

    Article  CAS  Google Scholar 

  18. Takahashi, H. et al. Solution structure of hanatoxin1, a gating modifier of voltage-dependent K(+ ) channels: common surface features of gating modifier toxins. J. Mol. Biol. 297, 771–780 (2000)

    Article  CAS  Google Scholar 

  19. Manoleras, N. & Norton, R. S. Three-dimensional structure in solution of neurotoxin III from the sea anemone Anemonia sulcata. Biochemistry 33, 11051–11061 (1994)

    Article  CAS  Google Scholar 

  20. Wang, J. et al. Functional mapping of the molecular surface of a gating modifier toxin for voltage-gated K+ channels. Biophys. J. 84, 218a (2003)

    Google Scholar 

  21. Lee, H. C., Wang, J. M. & Swartz, K. J. Interaction between extracellular Hanatoxin and the resting conformation of the voltage-sensor paddle in Kv channels. Neuron 40, 527–536 (2003)

    Article  CAS  Google Scholar 

  22. Jiang, Q. X. Spherical reconstruction: a novel method for structure determination from cryo-EM images of membrane proteins in small vesicles. Thesis, Yale Univ. (2001)

    Google Scholar 

  23. Garcia, M. L., Garcia-Calvo, M., Hidalgo, P., Lee, A. & MacKinnon, R. Purification and characterization of three inhibitors of voltage-dependent K+ channels from Leiurus quinquestriatus var. hebraeus venom. Biochemistry 33, 6834–6839 (1994)

    Article  CAS  Google Scholar 

  24. Ladokhin, A. S., Jayasinghe, S. & White, S. H. How to measure and analyze tryptophan fluorescence in membranes properly, and why bother? Anal. Biochem. 285, 235–245 (2000)

    Article  CAS  Google Scholar 

  25. Almeida, P. F. F. & Vaz, W. L. C. in Handbook of Biological Physics (eds Lipowsky, R. & Sackmann, E.) 305–357 (Elsevier Science, Netherlands, 1995)

    Google Scholar 

  26. Schurr, J. M. The role of diffusion in enzyme kinetics. Biophys. J. 10, 717–727 (1970)

    Article  ADS  CAS  Google Scholar 

  27. Hille, B. Ion Channels of Excitable Membranes 635–662 (Sinauer Associates, Sunderland, MA, 2001)

    Google Scholar 

  28. Heginbotham, L., LeMasurier, M., Kolmakova-Partensky, L. & Miller, C. Single streptomyces lividans K(+ ) channels: functional asymmetries and sidedness of proton activation. J. Gen. Physiol. 114, 551–560 (1999)

    Article  CAS  Google Scholar 

  29. Diochot, S., Drici, M. D., Moinier, D., Fink, M. & Lazdunski, M. Effects of phrixotoxins on the Kv4 family of potassium channels and implications for the role of Ito1 in cardiac electrogenesis. Br. J. Pharmacol. 126, 251–263 (1999)

    Article  CAS  Google Scholar 

  30. Escoubas, P., Diochot, S., Celerier, M. L., Nakajima, T. & Lazdunski, M. Novel tarantula toxins for subtypes of voltage-dependent potassium channels in the Kv2 and Kv4 subfamilies. Mol. Pharmacol. 62, 48–57 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. King for toxin synthesis for initial experiments, F. Valiyaveetil for help with fluorescence experiments, V. Ruta for help with toxin purification and electrophysiology and S. Long for providing AgTx2. This work was supported by a National Institutes of Health grant to R.M. R.M. is an investigator in the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roderick MacKinnon.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SY., MacKinnon, R. A membrane-access mechanism of ion channel inhibition by voltage sensor toxins from spider venom. Nature 430, 232–235 (2004). https://doi.org/10.1038/nature02632

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02632

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing