Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Context-dependent contributions of backbone hydrogen bonding to β-sheet folding energetics

Abstract

Backbone hydrogen bonds (H-bonds) are prominent features of protein structures; however, their role in protein folding remains controversial because they cannot be selectively perturbed by traditional methods of protein mutagenesis1,2,3. Here we have assessed the contribution of backbone H-bonds to the folding kinetics and thermodynamics of the PIN WW domain, a small β-sheet protein4, by individually replacing its backbone amides with esters. Amide-to-ester mutations site-specifically perturb backbone H-bonds in two ways: a H-bond donor is eliminated by replacing an amide NH with an ester oxygen, and a H-bond acceptor is weakened by replacing an amide carbonyl with an ester carbonyl5,6,7,8,9,10,11,12,13. We perturbed the 11 backbone H-bonds of the PIN WW domain by synthesizing 19 amide-to-ester mutants. Thermodynamic studies on these variants show that the protein is most destabilized when H-bonds that are enveloped by a hydrophobic cluster are perturbed. Kinetic studies indicate that native-like secondary structure forms in one of the protein's loops in the folding transition state, but the backbone is less ordered elsewhere in the sequence. Collectively, our results provide an unusually detailed picture of the folding of a β-sheet protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of the PIN WW domain.
Figure 2: Plot of -ΔΔGf at 2 °C for the amide-to-ester (A-to-E) mutants versus mutation location. ΔΔGf = (ΔGf (wild type) - ΔGf (A-to-E mutant)).
Figure 3: Plot of ΦM versus mutation location.

Similar content being viewed by others

References

  1. Dill, K. A. Dominant forces in protein folding. Biochemistry 29, 7133–7155 (1990)

    Article  CAS  Google Scholar 

  2. Honig, B. & Yang, A. S. Free energy balance in protein folding. Adv. Protein Chem. 46, 27–58 (1995)

    Article  CAS  Google Scholar 

  3. Myers, J. K. & Pace, C. N. Hydrogen bonding stabilizes globular proteins. Biophys. J. 71, 2033–2039 (1996)

    Article  ADS  CAS  Google Scholar 

  4. Sudol, M. Structure and function of the WW domain. Prog. Biophys. Mol. Biol. 65, 113–132 (1996)

    Article  CAS  Google Scholar 

  5. Thorson, J. S., Chapman, E. & Schultz, P. G. Analysis of hydrogen bonding strengths in proteins using unnatural amino acids. J. Am. Chem. Soc. 117, 9361–9362 (1995)

    Article  CAS  Google Scholar 

  6. Chapman, E., Thorson, J. S. & Schultz, P. G. Mutational analysis of backbone hydrogen bonds in staphylococcal nuclease. J. Am. Chem. Soc. 119, 7151–7152 (1997)

    Article  CAS  Google Scholar 

  7. Koh, J. T., Cornish, V. W. & Schultz, P. G. An experimental approach to evaluating the role of backbone interactions in proteins using unnatural amino acid mutagenesis. Biochemistry 36, 11314–11322 (1997)

    Article  CAS  Google Scholar 

  8. Shin, I., Ting, A. Y. & Schultz, P. G. Analysis of backbone hydrogen bonding in a β-turn of staphylococcal nuclease. J. Am. Chem. Soc. 119, 12667–12668 (1997)

    Article  CAS  Google Scholar 

  9. Haque, T. S., Little, J. C. & Gellman, S. H. Stereochemical requirements for β-hairpin formation: model studies with four-residue peptides and depsipeptides. J. Am. Chem. Soc. 118, 6975–6985 (1996)

    Article  CAS  Google Scholar 

  10. Wales, T. E. & Fitzgerald, M. C. The energetic contribution of backbone–backbone hydrogen bonds to the thermodynamic stability of a hyperstable p22 Arc repressor mutant. J. Am. Chem. Soc. 123, 7709–7710 (2001)

    Article  CAS  Google Scholar 

  11. Silinski, P. & Fitzgerald, M. C. Comparative analysis of two different amide-to-ester bond mutations in the β-sheet of 4-oxalocrotonate tautomerase. Biochemistry 42, 6620–6630 (2003)

    Article  CAS  Google Scholar 

  12. Beligere, G. S. & Dawson, P. E. Design, synthesis, and characterization of 4-ester CI2, a model for backbone hydrogen bonding in protein α-helices. J. Am. Chem. Soc. 122, 12079–12082 (2000)

    Article  CAS  Google Scholar 

  13. Blankenship, J. W., Balambika, R. & Dawson, P. E. Probing backbone hydrogen bonds in the hydrophobic core of GCN4. Biochemistry 41, 15676–15684 (2002)

    Article  CAS  Google Scholar 

  14. Chen, H. I. et al. Characterization of the WW domain of human yes-associated protein and its polyproline-containing ligands. J. Biol. Chem. 272, 17070–17077 (1997)

    Article  CAS  Google Scholar 

  15. Koepf, E. K., Petrassi, H. M., Sudol, M. & Kelly, J. W. WW: an isolated three-stranded antiparallel β-sheet domain that unfolds and refolds reversibly; evidence for a structured hydrophobic cluster in urea and GdnHCl and a disordered thermal unfolded state. Protein Sci. 8, 841–853 (1999)

    Article  CAS  Google Scholar 

  16. Crane, J. C., Koepf, E. K., Kelly, J. W. & Gruebele, M. Mapping the transition state of the WW domain β-sheet. J. Mol. Biol. 298, 283–292 (2000)

    Article  CAS  Google Scholar 

  17. Jager, M., Nguyen, H., Crane, J. C., Kelly, J. W. & Gruebele, M. The folding mechanism of a β-sheet: the WW domain. J. Mol. Biol. 311, 373–393 (2001)

    Article  CAS  Google Scholar 

  18. Kowalski, J. A., Liu, K. & Kelly, J. W. NMR solution structure of the isolated apo Pin1 WW domain: comparison to the X-ray crystal structures of Pin1. Biopolymers 63, 111–121 (2002)

    Article  CAS  Google Scholar 

  19. Kaul, R., Deechongkit, S. & Kelly, J. W. Synthesis of a negatively charged dibenzofuran-based β-turn mimetic and its incorporation into the WW miniprotein-enhanced solubility without a loss of thermodynamic stability. J. Am. Chem. Soc. 124, 11900–11907 (2002)

    Article  CAS  Google Scholar 

  20. Nguyen, H., Jager, M., Moretto, A., Gruebele, M. & Kelly, J. W. Tuning the free-energy landscape of a WW domain by temperature, mutation, and truncation. Proc. Natl Acad. Sci. USA 100, 3948–3953 (2003)

    Article  ADS  CAS  Google Scholar 

  21. Ferguson, N., Johnson, C. M., Macias, M., Oschkinat, H. & Fersht, A. Ultrafast folding of WW domains without structured aromatic clusters in the denatured state. Proc. Natl Acad. Sci. USA 98, 13002–13007 (2001)

    Article  ADS  CAS  Google Scholar 

  22. Ferguson, N. et al. Using flexible loop mimetics to extend Φ-value analysis to secondary structure interactions. Proc. Natl. Acad. Sci. USA 98, 13008–13013 (2001)

    Article  ADS  CAS  Google Scholar 

  23. Joseph, J. D., Yeh, E. S., Swenson, K. I., Means, A. R. & Winkler, K. E. The peptidyl–prolyl isomerase Pin1. Prog. Cell Cycle Res. 5, 477–487 (2003)

    PubMed  Google Scholar 

  24. Ranganathan, R., Lu, K. P., Hunter, T. & Noel, J. P. Structural and functional analysis of the mitotic rotamase Pin1 suggests substrate recognition is phosphorylation dependent. Cell 89, 875–886 (1997)

    Article  CAS  Google Scholar 

  25. Deechongkit, S., You, S.-L. & Kelly, J. W. Synthesis of side chain protected chiral α-hydroxy acids for Boc solid phase peptide synthesis. Org. Lett. 6, 497–500 (2004)

    Article  CAS  Google Scholar 

  26. Baskakov, I. & Bolen, D. W. Forcing thermodynamically unfolded proteins to fold. J. Biol. Chem. 273, 4831–4834 (1998)

    Article  CAS  Google Scholar 

  27. Fersht, A. R., Matouschek, A. & Serrano, L. The folding of an enzyme. I. Theory of protein engineering analysis of stability and pathway of protein folding. J. Mol. Biol. 224, 771–782 (1992)

    Article  CAS  Google Scholar 

  28. Nymeyer, H., Socci, N. D. & Onuchic, J. N. Landscape approaches for determining the ensemble of folding transition states: success and failure hinge on the degree of frustration. Proc. Natl Acad. Sci. USA 97, 634–639 (2000)

    Article  ADS  CAS  Google Scholar 

  29. Bramson, H. N., Thomas, N. E. & Kaiser, E. T. The use of N-methylated peptides and depsipeptides to probe the binding of heptapeptide substrates to cAMP-dependent protein kinase. J. Biol. Chem. 260, 5452–5457 (1985)

    Google Scholar 

  30. Gruebele, M., Sabelko, J., Ballew, R. & Ervin, J. Laser temperature jump induced protein refolding. Acc. Chem. Res. 31, 699–707 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. You, J. Blankenship and R. Balambika for discussions. We acknowledge financial support from the NIH, The Skaggs Institute for Chemical Biology, the Lita Annenberg Hazen Foundation and the Norton B. Gilula Fellowship (to S.D.). M.G. and H.N. were supported by a grant from the NSF. P.E.D. was supported by the NIH and the Alfred P. Sloan Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffery W. Kelly.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Information

Contains the raw data used to calculate ΦM values (two figures and one table), and a plot of ΦM as a function of temperature for all of the A-to-E mutants with TM > 35 °C. (PDF 187 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deechongkit, S., Nguyen, H., Powers, E. et al. Context-dependent contributions of backbone hydrogen bonding to β-sheet folding energetics. Nature 430, 101–105 (2004). https://doi.org/10.1038/nature02611

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02611

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing