Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of a self-splicing group I intron with both exons

Abstract

The discovery of the RNA self-splicing group I intron provided the first demonstration that not all enzymes are proteins. Here we report the X-ray crystal structure (3.1-Å resolution) of a complete group I bacterial intron in complex with both the 5′- and the 3′-exons. This complex corresponds to the splicing intermediate before the exon ligation step. It reveals how the intron uses structurally unprecedented RNA motifs to select the 5′- and 3′-splice sites. The 5′-exon's 3′-OH is positioned for inline nucleophilic attack on the conformationally constrained scissile phosphate at the intron–3′-exon junction. Six phosphates from three disparate RNA strands converge to coordinate two metal ions that are asymmetrically positioned on opposing sides of the reactive phosphate. This structure represents the first splicing complex to include a complete intron, both exons and an organized active site occupied with metal ions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall secondary and tertiary structure of the Azoarcus pre-2S intron splicing complex.
Figure 2: The G binding motif and the structure of the pre-2S active site.
Figure 3: Recognition of the P1 substrate helix by the active site.
Figure 4: Active-site metal ions and their ligands.

Similar content being viewed by others

References

  1. Cech, T. R. The generality of self-splicing RNA: relationship to nuclear mRNA splicing. Cell 44, 207–210 (1986)

    Article  CAS  Google Scholar 

  2. Cech, T. R., Zaug, A. J. & Grabowski, P. J. In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 27, 487–496 (1981)

    Article  CAS  Google Scholar 

  3. Cech, T. R. & Golden, B. L. in The RNA World 2nd edn (eds Gesteland, R. F., Cech, T. R. & Atkins, J. F.) 321–349 (Cold Spring Harbor Laboratory, New York, 1999)

    Google Scholar 

  4. Reinhold-Hurek, B. & Shub, D. A. Self-splicing introns in tRNA genes of widely divergent bacteria. Nature 357, 173–176 (1992)

    Article  ADS  CAS  Google Scholar 

  5. Cate, J. H. et al. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273, 1678–1685 (1996)

    Article  ADS  CAS  Google Scholar 

  6. Golden, B. L., Gooding, A. R., Podell, E. R. & Cech, T. R. A preorganized active site in the crystal structure of the Tetrahymena ribozyme. Science 282, 259–264 (1998)

    Article  ADS  CAS  Google Scholar 

  7. Bass, B. L. & Cech, T. R. Ribozyme inhibitors: deoxyguanosine and dideoxyguanosine are competitive inhibitors of self-splicing of the Tetrahymena ribosomal ribonucleic acid precursor. Biochemistry 25, 4473–4477 (1986)

    Article  CAS  Google Scholar 

  8. Moran, S., Kierzek, R. & Turner, D. H. Binding of guanosine and 3′ splice site analogues to a group I ribozyme: interactions with functional groups of guanosine and with additional nucleotides. Biochemistry 32, 5247–5256 (1993)

    Article  CAS  Google Scholar 

  9. Nagai, K., Oubridge, C., Jessen, T. H., Li, J. & Evans, P. R. Crystal structure of the RNA-binding domain of the U1 small nuclear ribonucleoprotein A. Nature 348, 515–520 (1990)

    Article  ADS  CAS  Google Scholar 

  10. Ferre-D'Amare, A. R. & Doudna, J. A. Crystallization and structure determination of a hepatitis delta virus ribozyme: use of the RNA-binding protein U1A as a crystallization module. J. Mol. Biol. 295, 541–556 (2000)

    Article  CAS  Google Scholar 

  11. Tanner, M. A. & Cech, T. R. Activity and thermostability of the small self-splicing group I intron in the pre-tRNAlle of the purple bacterium Azoarcus. RNA 2, 74–83 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Michel, F. & Westhof, E. Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J. Mol. Biol. 216, 585–610 (1990)

    Article  CAS  Google Scholar 

  13. Rangan, P., Masquida, B., Westhof, E. & Woodson, S. A. Assembly of core helices and rapid tertiary folding of a small bacterial group I ribozyme. Proc. Natl Acad. Sci. USA 100, 1574–1579 (2003)

    Article  ADS  CAS  Google Scholar 

  14. McSwiggen, J. A. & Cech, T. R. Stereochemistry of RNA cleavage by the Tetrahymena ribozyme and evidence that the chemical step is not rate-limiting. Science 244, 679–683 (1989)

    Article  ADS  CAS  Google Scholar 

  15. Nissen, P., Hansen, J., Ban, N., Moore, P. & Steitz, T. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000)

    Article  ADS  CAS  Google Scholar 

  16. Rupert, P. B. & Ferre-D'Amare, A. R. Crystal structure of a hairpin ribozyme-inhibitor complex with implications for catalysis. Nature 410, 780–786 (2001)

    Article  ADS  CAS  Google Scholar 

  17. Michel, F., Hanna, M., Green, R., Bartel, D. P. & Szostak, J. W. The guanosine binding site of the Tetrahymena ribozyme. Nature 342, 391–395 (1989)

    Article  ADS  CAS  Google Scholar 

  18. Damberger, S. H. & Gutell, R. R. A comparative database of group I intron structures. Nucleic Acids Res. 22, 3508–3510 (1994)

    Article  CAS  Google Scholar 

  19. Duarte, C. M., Wadley, L. M. & Pyle, A. M. RNA structure comparison, motif search and discovery using a reduced representation of RNA conformational space. Nucleic Acids Res. 31, 4755–4761 (2003)

    Article  CAS  Google Scholar 

  20. Kuo, L. Y., Davidson, L. A. & Pico, S. Characterization of the Azoarcus ribozyme: tight binding to guanosine and substrate by an unusually small group I ribozyme. Biochim. Biophys. Acta 1489, 281–292 (1999)

    Article  CAS  Google Scholar 

  21. Strauss-Soukup, J. & Strobel, S. A. A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme. J. Mol. Biol. 302, 339–358 (2000)

    Article  CAS  Google Scholar 

  22. Soukup, J. K., Minakawa, N., Matsuda, A. & Strobel, S. A. Identification of A-minor tertiary interactions within a bacterial group I intron active site by 3-deazaadenosine interference mapping. Biochemistry 41, 10426–10438 (2002)

    Article  CAS  Google Scholar 

  23. Strobel, S. A., Ortoleva-Donnelly, L., Ryder, S. P., Cate, J. H. & Moncoeur, E. Complementary sets of noncanonical base pairs mediate RNA helix packing in the group I intron active site. Nature Struct. Biol. 5, 60–66 (1998)

    Article  CAS  Google Scholar 

  24. Herschlag, D., Eckstein, F. & Cech, T. R. The importance of being ribose at the cleavage site in the Tetrahymena ribozyme reaction. Biochemistry 32, 8312–8321 (1993)

    Article  CAS  Google Scholar 

  25. Strobel, S. A. & Cech, T. R. Minor groove recognition of the conserved G·U pair at the Tetrahymena ribozyme reaction site. Science 267, 675–679 (1995)

    Article  ADS  CAS  Google Scholar 

  26. Strobel, S. A. & Ortoleva-Donnelly, L. A hydrogen bonding triad stabilizes the chemical transition state of a group I ribozyme. Chem. Biol. 6, 153–156 (1999)

    Article  CAS  Google Scholar 

  27. Ban, N., Nissen, P., Hansen, J., Moore, P. & Steitz, T. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289, 905–920 (2000)

    Article  ADS  CAS  Google Scholar 

  28. Wimberly, B. T. et al. Structure of the 30S ribosomal subunit. Nature 407, 327–339 (2000)

    Article  ADS  CAS  Google Scholar 

  29. Shan, S., Yoshida, A., Sun, S., Piccirilli, J. A. & Herschlag, D. Three metal ions at the active site of the Tetrahymena group I ribozyme. Proc. Natl Acad. Sci. USA 96, 12299–12304 (1999)

    Article  ADS  CAS  Google Scholar 

  30. Shan, S., Kravchuk, A. V., Piccirilli, J. A. & Herschlag, D. Defining the catalytic metal ion interactions in the Tetrahymena ribozyme reaction. Biochemistry 40, 5161–5171 (2001)

    Article  CAS  Google Scholar 

  31. Piccirilli, J. A., Vyle, J. S., Caruthers, M. H. & Cech, T. R. Metal ion catalysis in the Tetrahymena ribozyme reaction. Nature 362, 85–88 (1993)

    Article  ADS  Google Scholar 

  32. Weinstein, L. B., Jones, B. C. N. M., Cosstick, R. & Cech, T. R. A second catalytic metal ion in a group I ribozyme. Nature 388, 805–808 (1997)

    Article  ADS  CAS  Google Scholar 

  33. Yoshida, A., Sun, S. & Piccirilli, J. A. A new metal ion interaction in the Tetrahymena ribozyme reaction revealed by double sulfur substitution. Nature Struct. Biol. 6, 318–321 (1999)

    Article  CAS  Google Scholar 

  34. Sjogren, A. S., Pettersson, E., Sjoberg, B. M. & Stromberg, R. Metal ion interaction with cosubstrate in self-splicing of group I introns. Nucleic Acids Res. 25, 648–653 (1997)

    Article  CAS  Google Scholar 

  35. Steitz, T. A. & Steitz, J. A. A general two-metal-ion mechanism for catalytic RNA. Proc. Natl Acad. Sci. USA 90, 6498–6502 (1993)

    Article  ADS  CAS  Google Scholar 

  36. Szewczak, A. A., Kosek, A. B., Piccirilli, J. A. & Strobel, S. A. Identification of an active site ligand for a group I ribozyme catalytic metal ion. Biochemistry 41, 2516–2525 (2002)

    Article  CAS  Google Scholar 

  37. Basu, S. et al. A specific monovalent metal ion integral to the A-A platform of the RNA tetraloop receptor. Nature Struct. Biol. 5, 986–992 (1998)

    Article  CAS  Google Scholar 

  38. Rangan, P. & Woodson, S. A. Structural requirement for Mg2+ binding in the group I intron core. J. Mol. Biol. 329, 229–238 (2003)

    Article  CAS  Google Scholar 

  39. Grosshans, C. A. & Cech, T. R. Metal ion requirements for sequence-specific endoribonuclease activity of the Tetrahymena ribozyme. Biochemistry 28, 6888–6894 (1989)

    Article  CAS  Google Scholar 

  40. Knitt, D. S. & Herschlag, D. pH dependencies of the Tetrahymena ribozyme reveal an unconventional origin of an apparent pKa . Biochemistry 35, 1560–1570 (1996)

    Article  CAS  Google Scholar 

  41. Shan, S. O. & Herschlag, D. Probing the role of metal ions in RNA catalysis: kinetic and thermodynamic characterization of a metal ion interaction with the 2′-moiety of the guanosine nucleophile in the Tetrahymena group I ribozyme. Biochemistry 38, 10958–10975 (1999)

    Article  CAS  Google Scholar 

  42. Steitz, T. A. A mechanism for all polymerases. Nature 391, 231–232 (1998)

    Article  ADS  CAS  Google Scholar 

  43. Sigel, R. K., Vaidya, A. & Pyle, A. M. Metal ion binding sites in a group II intron core. Nature Struct. Biol. 7, 1111–1116 (2000)

    Article  CAS  Google Scholar 

  44. Sontheimer, E. J., Sun, S. & Piccirilli, J. A. Metal ion catalysis during splicing of premessenger RNA. Nature 388, 801–805 (1997)

    Article  ADS  CAS  Google Scholar 

  45. Brunger, A. T. et al. Crystallography and NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  CAS  Google Scholar 

  46. Otwinowski, Z. & Minor, W. Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  47. Collaborative Computational Project 4, The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  48. Rould, M. A., Perona, J. J. & Steitz, T. A. Improving multiple isomorphous replacement phasing by heavy-atom refinement using solvent-flattened phases. Acta Crystallogr. A 48, 751–756 (1992)

    Article  Google Scholar 

  49. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  50. Carson, M. Ribbons 2.0. J. Appl. Crystallogr. 24, 958–961 (1991)

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Steitz, T. Steitz, J. Piccirilli, A. Pyle, S. Woodson, L. Szewczak, J. Cochrane, M. Gill, R. Anderson and A. Seila for discussion and comments on the manuscript; C. Höbartner and R. Micura for the gift of a 2′-seleno-methyl substituted dCIRC oligonucleotide (Supplementary Information); L. Wadley for assistance with PRIMOS analysis; M. Becker and the staff of the X-25 beamline at Brookhaven NSLS for assistance with data collection; and the staff in the Yale Center for Structural Biology for extensive technical assistance. This project was supported by grants from the NSF and the NIH.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jimin Wang or Scott A. Strobel.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Information

These supplementary data demonstrate that the pre-2S complex assembles, and that it is active with a ribose at ΩG206 and inactive when 2'-deoxy is substituted at this position. It shows the positions of heavy atoms used to confirm the register of the RNA within the electron density, and it shows the sites of Tl+ binding in complexes with 2'-deoxy ribose or ribose at ΩG206. (PDF 2211 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, P., Stahley, M., Kosek, A. et al. Crystal structure of a self-splicing group I intron with both exons. Nature 430, 45–50 (2004). https://doi.org/10.1038/nature02642

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02642

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing