Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A possible terrestrial analogue for haematite concretions on Mars

Abstract

Recent exploration has revealed extensive geological evidence for a water-rich past in the shallow subsurface of Mars. Images of in situ and loose accumulations of abundant, haematite-rich spherical balls from the Mars Exploration Rover ‘Opportunity’ landing site at Meridiani Planum1,2,3 bear a striking resemblance to diagenetic (post-depositional), haematite-cemented concretions found in the Jurassic Navajo Sandstone of southern Utah4,5. Here we compare the spherical concretions imaged on Mars to these terrestrial concretions, and investigate the implications for analogous groundwater-related formation mechanisms. The morphology, character and distribution of Navajo haematite concretions allow us to infer host-rock properties and fluid processes necessary for similar features to develop on Mars. We conclude that the formation of such spherical haematite concretions requires the presence of a permeable host rock, groundwater flow and a chemical reaction front.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Utah haematite concretion examples (ad) compared with Mars example (e).
Figure 2: Model for Utah haematite concretion formation.
Figure 3: Navajo Sandstone statistics for haematite concretion size and spacing for select, small samples.

Similar content being viewed by others

References

  1. NASA Jet Propulsion Laboratory. Mars Exploration Rover Missionhttp://marsrovers.jpl.nasa.gov〉 (February–March 2004).

  2. Glotch, T. D. et al. Hematite at Meridiani Planum: Detailed spectroscopic observations and testable hypotheses. Lunar Planet. Sci. Conf. XXXV [online] Abstr. 2168; 〈http://www.lpi.usra.edu/meetings/lpsc2004〉 (2004)

  3. Squyres, S. W. et al. Initial results from the MER Athena Science investigation at Gusev Crater and Meridiani Planum. Lunar Planet. Sci. Conf. XXXV [online] Abstr. 2187, 〈http://www.lpi.usra.edu/meetings/lpsc2004〉 (2004)

  4. Chan, M. A., Parry, W. T. & Bowman, J. R. Diagenetic hematite and manganese oxides and fault-related fluid flow in Jurassic sandstones, southeastern Utah. Am. Assoc. Petrol. Geol. Bull. 84, 1281–1310 (2000)

    CAS  Google Scholar 

  5. Chan, M. A. & Parry, W. T. Rainbow of rocks: mysteries of sandstone colors and concretions in Colorado Plateau Canyon Country. (Utah Geological Survey Public Information Service, Salt Lake City, Utah, 2002); 〈http://www.ugs.state.ut.us/online/pdf/pi-77.pdf〉.

  6. Christensen, P. R., Morris, R. V., Lane, M. D., Bandfield, J. L. & Malin, M. C. Global mapping of Martian hematite mineral deposits: Remnants of water-driven processes on early Mars. J. Geophys. Res. 106, 23873–23885 (2001)

    Article  ADS  CAS  Google Scholar 

  7. Newsom, H. E. et al. Paleolakes and impact basins in southern Arabia Terra, including Meridiani Planum: Implications for the formation of hematite deposits on Mars. J. Geophys. Res. 108, doi:10.1029/2002JE001993 (2003)

  8. Catling, D. C. & Moore, J. M. The nature of coarse-grained crystalline hematite and its implications for the early environment of Mars. Icarus 165, 277–300 (2003)

    Article  ADS  CAS  Google Scholar 

  9. Hynek, B. M., Arvidson, R. E. & Phillips, R. J. Geological setting and origin of Terra Meridiani hematite deposit on Mars. J. Geophys. Res. 107, doi:10.1029/2002JE001891 (2002)

  10. Ormö, J. & Komatsu, G. Hydrocarbon related bleaching of strata and hematite deposition in red beds at Moab, Utah: A possible analogous process that formed bright layers and hematite deposits on Mars. Lunar Planet. Sci. Conf. XXXIV [online] Abstr. 1356, 〈http://www.lpi.usra.edu/meetings/lpsc2003〉 (2003)

  11. Beitler, B., Ormö, J., Komatsu, G., Chan, M. A. & Parry, W. T. Geomorphic and diagenetic analogs to hematite regions on Mars: Examples from Jurassic Sandstones of Southern Utah, USA. Lunar Planet. Sci. Conf. XXXV [online] Abstr. 1289, 〈http://www.lpi.usra.edu/meetings/lpsc2004〉 (2004)

  12. Antonellini, M. & Aydin, A. Effect of faulting on fluid flow in porous sandstones: geometry and spatial distribution. Am. Assoc. Petrol. Geol. Bull 79, 642–671 (1995)

    Google Scholar 

  13. Hood, J. W. & Patterson, D. J. Bedrock Aquifers in the Northern San Rafael Swell Area, Utah, with Special Emphasis on the Navajo Sandstone. Technical Publication 78 (Utah Department of National Research, 1984).

  14. Chan, M. A., Parry, W. T., Petersen, E. U. & Hall, C. M. 40Ar-39Ar age and chemistry of manganese mineralization in the Moab to Lisbon fault systems, southeastern Utah. Geology 29, 331–334 (2001)

    Article  ADS  CAS  Google Scholar 

  15. Beitler, B., Parry, W. T. & Chan, M. A. Bleaching of Jurassic Navajo Sandstone on Colorado Plateau Laramide Highs: Evidence of exhumed hydrocarbon supergiants? Geology 31, 1041–1044 (2003)

    Article  ADS  CAS  Google Scholar 

  16. Parry, W. T., Chan, M. A. & Beitler, B. Chemical bleaching indicates fluid flow in sandstone deformation bands. Am. Assoc. Petrol. Geol. Bull. 88, 175–191 (2004)

    CAS  Google Scholar 

  17. Beitler, B., Chan, M. A. & Parry, W. T. Field mapping and multispectral analysis of Jurassic Navajo Sandstone color and iron mineralization, Grand Staircase-Escalante National Monument, Utah. Geol. Soc. Am. Abstr. 34, 277 (2002)

    Google Scholar 

  18. Ortoleva, P. T. Geochemical Self-Organization (Oxford Univ. Press, 1994)

    Google Scholar 

  19. Cornell, R. M. & Schwertmann, U. The iron oxides: Structures, properties, reactions, occurrences and uses. (VCH, New York, 1996)

  20. Adamovic, J. in Ironstones Pseudokarst Reports 2 (eds Adamovic, J. & Cilek, V.) 7–40 (Czech Speleological Society, Zlaty Kun, Prague, 2002)

    Google Scholar 

  21. Nuccio, V. F. & Condon, S. M. Burial and thermal history of the Paradox Basin, Utah and Colorado, and petroleum potential of the middle Pennsylvanian Paradox Formation. US Geol. Surv. Bull. 76, O1–O41 (1996)

    Google Scholar 

  22. Morgan, P. & Gosnold, W. D. in Geophysical Framework of the Continental United States (eds Pakiser, L. C. & Mooney, W. D.) 493–522 (Geological Society of America Memoirs Vol. 172, Boulder, Colorado, 1989)

    Book  Google Scholar 

  23. Minitti, M. E., Lane, M. D. & Bishop, J. L. A new hematite formation mechanism for Mars. Lunar Planet. Sci. Conf. XXXV [online] Abstr. 1999, 〈http://www.lpi.usra.edu/meetings/lpsc2004〉 (2004)

  24. Hoffman, N. White Mars: A new model for Mars' surface and atmosphere based on CO2 . Icarus 146, 326–342 (2000)

    Article  ADS  CAS  Google Scholar 

  25. Fernández-Remolar, D. et al. The Tinto River, an extreme acidic environment under control of iron, as an analog of the Terra Meridiani hematite site of Mars. Planet. Space Sci. 53, 239–248 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the donors of the American Chemical Society Petroleum Research Fund, and the Bureau of Land Management-Grand Staircase Escalante National Monument for partial support of this research (to M.A.C. and W.T.P.). The work by J.O. was supported by the Spanish Ministry for Science and Technology and the Ramon y Cajal Program. The work by G.K. was supported by funding from the Italian Space Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjorie A. Chan.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, M., Beitler, B., Parry, W. et al. A possible terrestrial analogue for haematite concretions on Mars. Nature 429, 731–734 (2004). https://doi.org/10.1038/nature02600

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02600

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing