Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The influence of ridge migration on the magmatic segmentation of mid-ocean ridges

Abstract

The Earth's mid-ocean ridges display systematic changes in depth and shape, which subdivide the ridges into discrete spreading segments bounded by transform faults and smaller non-transform offsets of the axis1,2,3. These morphological changes have been attributed to spatial variations in the supply of magma from the mantle, although the origin of the variations is poorly understood1,4,5. Here we show that magmatic segmentation of ridges with fast and intermediate spreading rates is directly related to the migration velocity of the spreading axis over the mantle. For over 9,500 km of mid-ocean ridge examined, leading ridge segments in the ‘hotspot’ reference frame coincide with the shallow magmatically robust segments across 86 per cent of all transform faults and 73 per cent of all second-order discontinuities. We attribute this relationship to asymmetric mantle upwelling and melt production due to ridge migration, with focusing of melt towards ridge segments across discontinuities. The model is consistent with variations in crustal structure across discontinuities of the East Pacific Rise, and may explain variations in depth of melting and the distribution of enriched lavas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bathymetry map and axial depth profile along the NEPR.
Figure 2: Change in axial depth verses offset length at ridge-axis discontinuities.
Figure 3: Schematic diagram illustrating asymmetric mantle upwelling beneath a migrating MOR offset at a transform fault and OSC.
Figure 4: Axial depth and chemical parameters of zero-age lavas along the NEPR.

Similar content being viewed by others

References

  1. Macdonald, K. C. et al. A new view of the mid-ocean ridge from the behaviour of ridge-axis discontinuities. Nature 335, 217–225 (1988)

    Article  ADS  Google Scholar 

  2. Lin, J., Purdy, G. M., Schouten, H., Sempere, J.-C. & Zervas, C. Evidence from gravity data for focussed magmatic accretion along the Mid-Atlantic Ridge. Nature 344, 627–632 (1990)

    Article  ADS  Google Scholar 

  3. Cochran, J. R. & Sempere, J.-C. SEIR Scientific Team. The southeast Indian Ridge between 88°E and 118°E: gravity anomalies and crustal accretion at intermediate spreading rates. J. Geophys. Res 102, 15463–15487 (1997)

    Article  ADS  Google Scholar 

  4. Lin, J. & Phipps Morgan, J. The spreading rate dependence of three-dimensional mid-ocean ridge gravity structure. Geophys. Res. Lett. 19, 13–16 (1992)

    Article  ADS  Google Scholar 

  5. Wang, X., Cochran, J. R. & Barth, G. A. Gravity anomalies, crustal thickness, and the pattern of mantle flow at the fast spreading East Pacific Rise, 9°–10°N; evidence for three-dimensional upwelling. J. Geophys. Res. 101, 17927–17940 (1996)

    Article  ADS  Google Scholar 

  6. Langmuir, C. H., Bender, J. F. & Batiza, R. Petrological and tectonic segmentation of the East Pacific Rise, 5° 30′–14° 30′ N. Nature 322, 422–429 (1986)

    Article  ADS  CAS  Google Scholar 

  7. Detrick, R. S. et al. Multi-channel seismic imaging of a crustal magma chamber along the East Pacific Rise. Nature 326, 35–41 (1987)

    Article  ADS  Google Scholar 

  8. Van Adendonk, H. J. A., Harding, A. J., Orcutt, J. A. & McClain, J. S. Contrast in crustal structure across the Clipperton transform fault from travel time tomography. J. Geophys. Res. 106, 10961–10981 (2001)

    Article  ADS  Google Scholar 

  9. Scheirer, D. S. & Macdonald, K. C. Variation in cross-sectional area of the axial ridge along the East Pacific Rise; evidence for the magmatic budget of a fast spreading center. J. Geophys. Res. 98, 7871–7885 (1993)

    Article  ADS  Google Scholar 

  10. Cormier, M. H., Macdonald, K. C. & Wilson, D. S. A three-dimensional gravity analysis of the East Pacific Rise from 18° to 21° 30′S. J. Geophys. Res. 100, 8063–8082 (1995)

    Article  ADS  Google Scholar 

  11. The MELT Seismic Team, Imaging the deep seismic structure beneath a mid-ocean ridge: The MELT experiment. Science 280, 1215–1218 (1998)

    Article  ADS  Google Scholar 

  12. Stein, S., Melosh, H. J. & Minster, J. B. Ridge migration and asymmetric sea-floor spreading. Earth Planet. Sci. Lett. 36, 51–62 (1977)

    Article  ADS  Google Scholar 

  13. Small, C. & Danyushevsky, L. V. Plate-kinematic explanation for mid-oceanic-ridge depth discontinuities. Geology 31, 399–402 (2003)

    Article  ADS  Google Scholar 

  14. Davis, E. E. & Karsten, J. L. On the cause of the asymmetric distribution of seamounts about the Juan de Fuca Ridge; ridge-crest migration over a heterogeneous asthenosphere. Earth Planet. Sci. Lett. 79, 385–396 (1986)

    Article  ADS  Google Scholar 

  15. Schouten, H., Dick, H. J. B. & Klitgord, K. D. Migration of mid-ocean-ridge volcanic segments. Nature 326, 835–839 (1987)

    Article  ADS  Google Scholar 

  16. Madge, L. S. & Sparks, D. W. Three-dimensional mantle upwelling, melt generation, and melt migration beneath segment slow spreading ridges. J. Geophys. Res. 102, 20571–20583 (1997)

    Article  ADS  Google Scholar 

  17. Kent, G. M. et al. Evidence from three-dimensional seismic reflectivity images for enhanced melt supply beneath mid-ocean-ridge discontinuities. Nature 406, 614–618 (2000)

    Article  ADS  CAS  Google Scholar 

  18. Forsyth, D. W., Webb, S. C., Dorman, L. M. & Shen, Y. Phase velocities of Rayleigh waves in the MELT experiment on the East Pacific Rise. Science 280, 1235–1238 (1998)

    Article  ADS  CAS  Google Scholar 

  19. Toomey, D. R., Wilcock, W. S. D., Solomon, S. C., Hammond, W. C. & Orcutt, J. A. Mantle seismic structure beneath the MELT region of the East Pacific Rise from P and S wave tomography. Science 280, 1224–1227 (1998)

    Article  ADS  CAS  Google Scholar 

  20. Wolfe, C. J. & Solomon, S. C. Shear-wave splitting and implications for mantle flow beneath the MELT region of the East Pacific Rise. Science 280, 1230–1232 (1998)

    Article  ADS  CAS  Google Scholar 

  21. Conder, J. A., Forsyth, D. W. & Parmentier, E. M. Asthenospheric flow and asymmetry of the East Pacific Rise, MELT area. J. Geophys. Res. 107 doi:10.1029/2001JB000807 (2002)

  22. Toomey, D. R. et al. Asymmetric mantle dynamics in the MELT region of the East Pacific Rise. Earth Planet. Sci. Lett. 200, 287–295 (2002)

    Article  ADS  CAS  Google Scholar 

  23. Katz, R., Spiegelman, M. & Carbotte, S. M. Ridge migration, asthenospheric flow and the origin of magmatic segmentation in the global mid-ocean ridge system. Geophys. Res. Lett. (submitted)

  24. Canales, J. P., Detrick, R. S., Toomey, D. R. & Wilcock, W. S. D. Segment-scale variations in crustal structure of 150- to 300-k.y.-old fast spreading oceanic crust (East Pacific Rise, 8°15′N-10°15′N) from wide-angle seismic refraction profiles. Geophys. J. Int. 152, 766–794 (2003)

    Article  ADS  Google Scholar 

  25. Weiland, C. M. & Macdonald, K. C. Geophysical study of the East Pacific Rise 15° N-17° N; an unusually robust segment. J. Geophys. Res. 101, 20257–20273 (1996)

    Article  ADS  Google Scholar 

  26. Hooft, E. E. E. & Detrick, R. S. Relationship between axial morphology, crustal thickness, and mantle temperature along the Juan de Fuca and Gorda ridges. J. Geophys. Res. 100, 22499–22508 (1995)

    Article  ADS  Google Scholar 

  27. Hirschmann, M. M. & Stolper, E. W. A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contrib. Mineral. Petrol. 124, 185–208 (1996)

    Article  ADS  CAS  Google Scholar 

  28. Gripp, A. E. & Gordon, R. G. Young tracks of hotspots and current plate velocities. Geophys. J. Int. 150, 321–361 (2002)

    Article  ADS  Google Scholar 

  29. Donnelly, K. E. The Genesis of E-MORB: Extensions and Limitations of the Hot Spot Model. Thesis, Columbia Univ. (2002)

    Google Scholar 

  30. Su, Y.-J. Mid-ocean Ridge Basalt Trace Element Systematics: Constraints from Database Management, ICPMS Analyses, Global Data Compilation, and Petrologic Modeling. Thesis, Columbia Univ. (2002)

    Google Scholar 

Download references

Acknowledgements

We thank R. Katz, M. Spiegelman, R. Buck and W.B.F. Ryan for discussions during the development of these ideas. Special thanks are due to W. Haxby for GeoMapApp, which greatly aided the data analysis. This work was supported by the US National Science Foundation, the Palisades Geophysical Institute, and the Doherty Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Carbotte.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure 1

This figure shows bathymetry and axial depth profiles for the Southern East Pacific Rise and Pacific-Antarctic Rise. (PDF 738 kb)

Supplementary Figure 2

This figure shows bathymetry and axial depth profiles for the Explorer-Juan de Fuca-Gorda Ridges and South East Indian Ridge. (PDF 1339 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carbotte, S., Small, C. & Donnelly, K. The influence of ridge migration on the magmatic segmentation of mid-ocean ridges. Nature 429, 743–746 (2004). https://doi.org/10.1038/nature02652

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02652

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing