Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantum magnetic excitations from stripes in copper oxide superconductors

Abstract

In the copper oxide parent compounds of the high-transition-temperature superconductors1 the valence electrons are localized—one per copper site—by strong intra-atomic Coulomb repulsion. A symptom of this localization is antiferromagnetism2, where the spins of localized electrons alternate between up and down. Superconductivity appears when mobile ‘holes’ are doped into this insulating state, and it coexists with antiferromagnetic fluctuations3. In one approach to describing the coexistence, the holes are believed to self-organize into ‘stripes’ that alternate with antiferromagnetic (insulating) regions within copper oxide planes4, which would necessitate an unconventional mechanism of superconductivity5. There is an apparent problem with this picture, however: measurements of magnetic excitations in superconducting YBa2Cu3O6+x near optimum doping6 are incompatible with the naive expectations7,8 for a material with stripes. Here we report neutron scattering measurements on stripe-ordered La1.875Ba0.125CuO4. We show that the measured excitations are, surprisingly, quite similar to those in YBa2Cu3O6+x (refs 9, 10) (that is, the predicted spectrum of magnetic excitations7,8 is wrong). We find instead that the observed spectrum can be understood within a stripe model by taking account of quantum excitations. Our results support the concept that stripe correlations are essential to high-transition-temperature superconductivity11.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagrams illustrating stripe order in real space and possible magnetic scattering in reciprocal space.
Figure 2: Constant-energy slices through the experimentally measured magnetic scattering from La1.875Ba0.125CuO4.
Figure 3: Simulations of constant-energy slices.
Figure 4: Experimental results for integrated magnetic scattering and dispersion of the excitations.

Similar content being viewed by others

References

  1. Bednorz, J. G. & Müller, K. A. Possible high Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B 64, 189–193 (1986)

    Article  ADS  CAS  Google Scholar 

  2. Anderson, P. W. New approach to the theory of superexchange interactions. Phys. Rev. 115, 2–13 (1959)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  3. Orenstein, J. & Millis, A. J. Advances in the physics of high-temperature superconductivity. Science 288, 468–474 (2000)

    Article  ADS  CAS  Google Scholar 

  4. Kivelson, S. A. et al. How to detect fluctuating stripes in the high-temperature superconductors. Rev. Mod. Phys. 75, 1201–1241 (2003)

    Article  ADS  CAS  Google Scholar 

  5. Carlson, E. W., Emery, V. J., Kivelson, S. A. & Orgad, D. Concepts in high temperature superconductivity. In The Physics of Superconductors Vol. II: Superconductivity in Nanostructures, High-T c and Novel Superconductors, Organic Superconductors (eds Bennemann, K. H. & Ketterson, J. B.) (Springer, Berlin, in the press); preprint at 〈http://xxx.arxiv.org/pdf/cond-mat/0206217〉 (2002)

    Google Scholar 

  6. Bourges, P. et al. The spin excitation spectrum in superconducting YBa2Cu3O6.85 . Science 288, 1234–1237 (2000)

    Article  ADS  CAS  Google Scholar 

  7. Kaneshita, E., Ichioka, M. & Machida, K. Spin and charge excitations in incommensurate spin density waves. J. Phys. Soc. Jpn 70, 866–876 (2001)

    Article  ADS  CAS  Google Scholar 

  8. Batista, C. D., Ortiz, G. & Balatsky, A. V. Unified description of the resonance peak and incommensuration in high-Tc superconductors. Phys. Rev. B 64, 172508 (2001)

    Article  ADS  Google Scholar 

  9. Hayden, S. M., Mook, H. A., Dai, P., Perring, T. G. & Doğan, F. The structure of the high-energy spin excitations in a high-transition-temperature superconductor. Nature 429, 531–534 (2004)

    Article  ADS  CAS  Google Scholar 

  10. Reznik, D. et al. Dispersion of magnetic excitations in superconducting optimally doped YBa2Cu3O6.95. Preprint at 〈http://xxx.arxiv.org/pdf/cond-mat/0307591〉 (2003)

  11. Arrigoni, E., Fradkin, E. & Kivelson, S. A. Mechanism of high temperature superconductivity in a striped Hubbard model. Preprint at 〈http://xxx.arxiv.org/pdf/cond-mat/0309572〉 (2003)

  12. Moodenbaugh, A. R., Xu, Y., Suenaga, M., Folkerts, T. J. & Shelton, R. N. Superconducting properties of La2-xBaxCuO4 . Phys. Rev. B 38, 4596–4600 (1988)

    Article  ADS  CAS  Google Scholar 

  13. Fujita, M., Goka, H., Yamada, K., Tranquada, J. M. & Regnault, L. P. Stripe order, depinning, and fluctuations in La1.875Ba0.125CuO4 and La1.875Ba0.075Sr0.050CuO4. Preprint at 〈http://xxx.arxiv.org/pdf/cond-mat/0403396〉 (2004)

  14. White, S. R. & Scalapino, D. J. Density matrix renormalization group study of the striped phase in the 2D t-J model. Phys. Rev. Lett. 80, 1272–1275 (1998)

    Article  ADS  CAS  Google Scholar 

  15. Sachdev, S. & Read, N. Large N expansion for frustrated and doped quantum antiferromagnets. Int. J. Mod. Phys. B 5, 219–249 (1991)

    Article  ADS  Google Scholar 

  16. Zaanen, J., Osman, Y., Kruis, H. V., Nussinov, Z. & Tworzydlo, J. The geometric order of stripes and Luttinger liquids. Phil. Mag. B 81, 1485–1531 (2001)

    Article  ADS  CAS  Google Scholar 

  17. Coldea, R. et al. Spin waves and electronic interactions in La2CuO4 . Phys. Rev. Lett. 86, 5377–5380 (2001)

    Article  ADS  CAS  Google Scholar 

  18. Kastner, M. A., Birgeneau, R. J., Shirane, G. & Endoh, Y. Magnetic, transport, and optical properties of monolayer copper oxides. Rev. Mod. Phys. 70, 897–928 (1998)

    Article  ADS  CAS  Google Scholar 

  19. Bourges, P., Sidis, Y., Braden, M., Nakajima, K. & Tranquada, J. M. High-energy spin dynamics in La1.69Sr0.31NiO4 . Phys. Rev. Lett. 90, 147202 (2003)

    Article  ADS  CAS  Google Scholar 

  20. Boothroyd, A. T. et al. Spin dynamics in stripe-ordered La5/3Sr1/3NiO4 . Phys. Rev. B 67, 100407 (2003)

    Article  ADS  Google Scholar 

  21. Ito, M. et al. Effects of “stripes” on the magnetic excitation spectra of La1.48Nd0.4Sr0.12CuO4 . J. Phys. Soc. Jpn 72, 1627–1630 (2003)

    Article  ADS  CAS  Google Scholar 

  22. Cheong, S.-W. et al. Incommensurate magnetic fluctuations in La2-xSrxCuO4 . Phys. Rev. Lett. 67, 1791–1794 (1991)

    Article  ADS  CAS  Google Scholar 

  23. Hayden, S. M. et al. Comparison of the high-frequency magnetic fluctuations in insulating and superconducting La2-xSrxCuO4 . Phys. Rev. Lett. 76, 1344–1347 (1996)

    Article  ADS  CAS  Google Scholar 

  24. Dagotto, E. & Rice, T. M. Surprises on the way from one- to two-dimensional quantum magnets: the ladder materials. Science 271, 618–623 (1996)

    Article  ADS  CAS  Google Scholar 

  25. Barnes, T. & Riera, J. Susceptibility and excitation spectrum of (VO)2P2O7 in ladder and dimer-chain models. Phys. Rev. B 50, 6817–6822 (1994)

    Article  ADS  CAS  Google Scholar 

  26. Eccleston, R. S. et al. Spin dynamics of the spin-ladder dimer-chain material Sr14Cu24O41 . Phys. Rev. Lett. 81, 1702–1705 (1998)

    Article  ADS  CAS  Google Scholar 

  27. Kao, Y.-J., Si, Q. & Levin, K. Frequency evolution of neutron peaks below Tc: Commensurate and incommensurate structure in La1.85Sr0.15CuO4 and YBa2Cu3O6.6 . Phys. Rev. B 61, R11898–R11901 (2000)

    Article  ADS  CAS  Google Scholar 

  28. Norman, M. R. The relation of neutron incommensurability to electronic structure in high temperature superconductors. Phys. Rev. B 61, 14751–14758 (2000)

    Article  ADS  CAS  Google Scholar 

  29. Mook, H. A., Dai, P., Dogan, F. & Hunt, R. D. One-dimensional nature of the magnetic fluctuations in YBa2Cu3O6.6 . Nature 404, 729–731 (2000)

    Article  ADS  CAS  Google Scholar 

  30. Shamoto, S., Sato, M., Tranquada, J. M., Sternlieb, B. J. & Shirane, G. Neutron-scattering study of antiferromagnetism in YBa2Cu3O6.15 . Phys. Rev. B 48, 13817–13825 (1993)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. R. Moodenbaugh and Q. Li for assistance with sample characterization, and acknowledge discussions with E. Carlson, F. Essler, S. A. Kivelson, R. Konik, S. Sachdev and I. Zaliznyak. J.M.T., H.W., G.D.G. and G.X. are supported by the Office of Science, US Department of Energy. K.Y. and M.F. are supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology. Work was supported in part by the US–Japan Cooperative Research Program on Neutron Scattering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Tranquada.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tranquada, J., Woo, H., Perring, T. et al. Quantum magnetic excitations from stripes in copper oxide superconductors. Nature 429, 534–538 (2004). https://doi.org/10.1038/nature02574

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02574

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing