Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nonsense-mediated messenger RNA decay is initiated by endonucleolytic cleavage in Drosophila

Abstract

In eukaryotic cells, messenger RNAs harbouring premature termination codons (PTCs) are rapidly degraded by a conserved post-transcriptional mechanism referred to as nonsense-mediated mRNA decay (NMD)1,2, which prevents the synthesis of truncated proteins that could be deleterious for the cell1,2. Studies in yeast and mammals indicate that degradation by means of this pathway can occur from both the 5′ end of the message (involving decapping and 5′-to-3′ exonucleolytic digestion by XRN1) or the 3′ end (through accelerated deadenylation and exosome-mediated 3′-to-5′ decay)3,4,5,6,7,8,9. Here we show that, contrary to expectation, degradation of PTC-containing messages in Drosophila is initiated by endonucleolytic cleavage(s) in the vicinity of the nonsense codon. The resulting 5′ fragment is rapidly degraded by exonucleolytic digestion by the exosome, whereas the 3′ fragment is degraded by XRN1. This decay route is shown for several PTC-containing reporters, as well as an endogenous mRNA that is naturally regulated by NMD. We conclude that, despite conservation in the NMD machinery, PTC-containing transcripts are degraded in Drosophila by a mechanism that differs considerably from those described in yeast and mammals3,6,7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Accumulation of a 5′-truncated intermediate in XRN1-depleted cells.
Figure 2: The size of the decay intermediates is correlated with the position of the PTC.
Figure 3: The 5′ intermediate is capped, whereas the 3′ intermediate is polyadenylated.
Figure 4: Endonucleolytic cleavage(s) of nonsense transcripts occurs in the vicinity of the PTC.

Similar content being viewed by others

References

  1. Wagner, E. & Lykke-Andersen, J. mRNA surveillance: the perfect persist. J. Cell Sci. 115, 3033–3038 (2002)

    CAS  PubMed  Google Scholar 

  2. Wilusz, C. J., Wormington, M., Stuart, W. & Peltz, S. W. The cap-to-tail guide to mRNA turnover. Nature Rev. Mol. Cell Biol. 2, 237–246 (2001)

    Article  CAS  Google Scholar 

  3. Cao, D. & Parker, R. Computational modeling and experimental analysis of nonsense-mediated decay in yeast. Cell 113, 533–545 (2003)

    Article  CAS  PubMed  Google Scholar 

  4. Chen, C. Y. & Shyu, A. B. Rapid deadenylation triggered by a nonsense codon precedes decay of the RNA body in a mammalian cytoplasmic nonsense-mediated decay pathway. Mol. Cell. Biol. 23, 4805–4813 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hagan, K. W., Ruiz-Echevarria, M. J., Quan, Y. & Peltz, S. W. Characterization of cis-acting sequences and decay intermediates involved in nonsense-mediated mRNA turnover. Mol. Cell. Biol. 15, 809–823 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lejeune, F., Li, X. & Maquat, L. E. Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating, and exonucleolytic activities. Mol. Cell 12, 675–687 (2003)

    Article  CAS  PubMed  Google Scholar 

  7. Mitchell, P. & Tollervey, D. An NMD pathway in yeast involving accelerated deadenylation and exosome-mediated 3′ → 5′ degradation. Mol. Cell 11, 1405–1413 (2003)

    Article  CAS  PubMed  Google Scholar 

  8. Muhlrad, D. & Parker, R. Premature translational termination triggers mRNA decapping. Nature 370, 578–581 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Muhlrad, D. & Parker, R. Aberrant mRNAs with extended 3′ UTRs are substrates for rapid degradation by mRNA surveillance. RNA 5, 1299–1307 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. He, F. & Jacobson, A. Upf1p, Nmd2p, and Upf3p regulate the decapping and exonucleolytic degradation of both nonsense-containing mRNAs and wild-type mRNAs. Mol. Cell. Biol. 21, 1515–1530 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ivanov, I. P., Simin, K., Letsou, A., Atkins, J. F. & Gesteland, R. F. The Drosophila gene for antizyme requires ribosomal frameshifting for expression and contains an intronic gene for snRNP Sm D3 on the opposite strand. Mol. Cell. Biol. 18, 1553–1561 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Persengiev, S. P., Zhu, X. & Green, M. R. Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA 10, 12–18 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Binder, R., Hwang, S. P., Ratnasabapathy, R. & Williams, D. L. Degradation of apolipoprotein II mRNA occurs via endonucleolytic cleavage at 5′-AAU-3′/5′-UAA-3′ elements in single-stranded loop domains of the 3′-noncoding region. J. Biol. Chem. 264, 16910–16918 (1989)

    CAS  PubMed  Google Scholar 

  14. Binder, R. et al. Evidence that the pathway of transferrin receptor mRNA degradation involves an endonucleolytic cleavage within the 3′ UTR and does not involve poly(A) tail shortening. EMBO J. 13, 1969–1980 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bremer, K. A., Stevens, A. & Schoenberg, D. R. An endonuclease activity similar to Xenopus PMR1 catalyzes the degradation of normal and nonsense-containing human beta-globin mRNA in erythroid cells. RNA 9, 1157–1167 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brown, B. D. & Harland, R. M. Endonucleolytic cleavage of a maternal homeo box mRNA in Xenopus oocytes. Genes Dev. 4, 1925–1935 (1990)

    Article  CAS  PubMed  Google Scholar 

  17. Chernokalskaya, E. et al. A polysomal ribonuclease involved in the destabilization of albumin mRNA is a novel member of the peroxidase gene family. RNA 4, 1537–1548 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cunningham, K. S., Dodson, R. E., Nagel, M. A., Shapiro, D. J. & Schoenberg, D. R. Vigilin binding selectively inhibits cleavage of the vitellogenin mRNA 3′-untranslated region by the mRNA endonuclease polysomal ribonuclease 1. Proc. Natl Acad. Sci. USA 97, 12498–12502 (2000)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gallouzi, I. E. et al. A novel phosphorylation-dependent RNase activity of GAP-SH3 binding protein: a potential link between signal transduction and RNA stability. Mol. Cell. Biol. 18, 3956–3965 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee, C. H., Leeds, P. & Ross, J. Purification and characterization of a polysome-associated endoribonuclease that degrades c-myc mRNA in vitro. J. Biol. Chem. 273, 25261–25271 (1998)

    Article  CAS  PubMed  Google Scholar 

  21. Lim, S. K. & Maquat, L. E. Human beta-globin mRNAs that harbor a nonsense codon are degraded in murine erythroid tissues to intermediates lacking regions of exon I or exons I and II that have a cap-like structure at the 5′ termini. EMBO J. 11, 3271–3278 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Scheper, W., Meinsma, D., Holthuizen, P. E. & Sussenbach, J. S. Long-range RNA interaction of two sequence elements required for endonucleolytic cleavage of human insulin-like growth factor II mRNAs. Mol. Cell. Biol. 15, 235–245 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stevens, A. et al. β-Globin mRNA decay in erythroid cells: UG site-preferred endonucleolytic cleavage that is augmented by a premature termination codon. Proc. Natl Acad. Sci. USA 99, 12741–12746 (2002)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. van Dijk, E. L., Sussenbach, J. S. & Holthuizen, P. E. Identification of RNA sequences and structures involved in site-specific cleavage of IGF-II mRNAs. RNA 4, 1623–1635 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, Z. & Kiledjian, M. Identification of an erythroid-enriched endoribonuclease activity involved in specific mRNA cleavage. EMBO J. 19, 295–305 (2000)

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dykxhoorn, D. M., Novina, C. D. & Sharp, P. A. Killing the messenger: short RNAs that silence gene expression. Nature Rev. Mol. Cell Biol. 4, 457–467 (2003)

    Article  CAS  Google Scholar 

  27. Hayes, C. S. & Sauer, R. T. Cleavage of the A site mRNA codon during ribosome pausing provides a mechanism for translational quality control. Mol. Cell 12, 903–911 (2003)

    Article  CAS  PubMed  Google Scholar 

  28. Sunohara, T., Jojima, K., Yamamoto, Y., Inada, T. & Aiba, H. Nascent-peptide-mediated ribosome stalling at a stop codon induces mRNA cleavage resulting in nonstop mRNA that is recognized by tmRNA. RNA 10, 378–386 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gatfield, D., Unterholzner, L., Ciccarelli, F. D., Bork, P. & Izaurralde, E. Nonsense-mediated mRNA decay in Drosophila: at the intersection of the yeast and mammalian pathways. EMBO J. 22, 3960–3970 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bunch, T. A., Grinblat, Y. & Goldstein, L. S. Characterization and use of the Drosophila metallothionein promoter in cultured Drosophila melanogaster cells. Nucleic Acids Res. 16, 1043–1061 (1988)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Rehwinkel for sharing information on the microarray analysis, K. Czaplinski for helpful discussions, and E. D. Andrulis, J. T. Lis, R. Lührmann and S. F. Newbury for antibodies. This study was supported by the European Molecular Biology Organisation (EMBO) and the Human Frontier Science Program Organization (HFSPO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Izaurralde.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure 1

a, Efficiency of the XRN1 depletion. b, Comparison of decay rates of inducible CAT transcripts after inhibition of transcription by actinomycin D in untreated cells or cells depleted of XRN1 or UPF1.

Supplementary Figure 2

a, Depletion of individual components of the exosome or of SKI2 in cells expressing the CAT-PTC reporter leads to the accumulation of a 5' intermediate. b, Efficiency of the RRP4 depletion. c, The 3' degradation intermediate derived from the adh-64 reporter is polyadenylated.

Supplementary Figure 3

Mapping of the ends of the 5' and 3' intermediates for adh-64 and ODA mRNAs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gatfield, D., Izaurralde, E. Nonsense-mediated messenger RNA decay is initiated by endonucleolytic cleavage in Drosophila. Nature 429, 575–578 (2004). https://doi.org/10.1038/nature02559

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02559

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing