Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Programmed population control by cell–cell communication and regulated killing

Abstract

De novo engineering of gene circuits inside cells is extremely difficult1,2,3,4,5,6,7,8,9, and efforts to realize predictable and robust performance must deal with noise in gene expression and variation in phenotypes between cells10,11,12. Here we demonstrate that by coupling gene expression to cell survival and death using cell–cell communication, we can programme the dynamics of a population despite variability in the behaviour of individual cells. Specifically, we have built and characterized a ‘population control’ circuit that autonomously regulates the density of an Escherichia coli population. The cell density is broadcasted and detected by elements from a bacterial quorum-sensing system13,14, which in turn regulate the death rate. As predicted by a simple mathematical model, the circuit can set a stable steady state in terms of cell density and gene expression that is easily tunable by varying the stability of the cell–cell communication signal. This circuit incorporates a mechanism for programmed death in response to changes in the environment, and allows us to probe the design principles of its more complex natural counterparts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A population-control circuit programmes population dynamics by broadcasting, sensing and regulating the cell density using cell–cell communication and negative feedback.
Figure 2: Experimentally measured growth curves (a) and corresponding levels of LacZα–CcdB (b) of Top10F′ cells with the population-control circuit OFF (filled squares) and ON (open squares) for pH 7.0.
Figure 3: Effects of pH on circuit behaviour.

Similar content being viewed by others

References

  1. Becskei, A. & Serrano, L. Engineering stability in gene networks by autoregulation. Nature 405, 590–593 (2000)

    Article  ADS  CAS  Google Scholar 

  2. Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000)

    Article  ADS  CAS  Google Scholar 

  3. Atkinson, M. R., Savageau, M. A., Myers, J. T. & Ninfa, A. J. Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell 113, 597–607 (2003)

    Article  CAS  Google Scholar 

  4. Isaacs, F. J., Hasty, J., Cantor, C. R. & Collins, J. J. Prediction and measurement of an autoregulatory genetic module. Proc. Natl Acad. Sci. USA 100, 7714–7719 (2003)

    Article  ADS  CAS  Google Scholar 

  5. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000)

    Article  ADS  CAS  Google Scholar 

  6. Yokobayashi, Y., Weiss, R. & Arnold, F. H. Directed evolution of a genetic circuit. Proc. Natl Acad. Sci. USA 99, 16587–16591 (2002)

    Article  ADS  CAS  Google Scholar 

  7. Weiss, R., Homsy, G. E. & Knight, T. Jr Dimacs Workshop on Evolution as Computation 275–295 (Springer, Princeton, 1999)

    Google Scholar 

  8. Farmer, W. R. & Liao, J. C. Improving lycopene production in Escherichia coli by engineering metabolic control. Nature Biotechnol. 18, 533–537 (2000)

    Article  CAS  Google Scholar 

  9. Chen, W., Kallio, P. T. & Bailey, J. E. Construction and characterization of a novel cross-regulation system for regulating cloned gene expression in Escherichia coli. Gene 130, 15–22 (1993)

    Article  CAS  Google Scholar 

  10. Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. & van Oudenaarden, A. Regulation of noise in the expression of a single gene. Nature Genet. 31, 69–73 (2002)

    Article  CAS  Google Scholar 

  11. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002)

    Article  ADS  CAS  Google Scholar 

  12. Blake, W. J., Kærn, M., Cantor, C. R. & Collins, J. J. Noise in eukaryotic gene expression. Nature 422, 633–637 (2003)

    Article  ADS  CAS  Google Scholar 

  13. Miller, M. B. & Bassler, B. L. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55, 165–199 (2001)

    Article  CAS  Google Scholar 

  14. Fuqua, C., Parsek, M. R. & Greenberg, E. P. Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu. Rev. Genet. 35, 439–468 (2001)

    Article  CAS  Google Scholar 

  15. Egland, K. A. & Greenberg, E. P. Quorum sensing in Vibrio fischeri: elements of the luxl promoter. Mol. Microbiol. 31, 1197–1204 (1999)

    Article  CAS  Google Scholar 

  16. Engelberg-Kulka, H. & Glaser, G. Addiction modules and programmed cell death and antideath in bacterial cultures. Annu. Rev. Microbiol. 53, 43–70 (1999)

    Article  CAS  Google Scholar 

  17. Dong, Y. H. et al. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411, 813–817 (2001)

    Article  ADS  CAS  Google Scholar 

  18. Leadbetter, J. R. & Greenberg, E. P. Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J. Bacteriol. 182, 6921–6926 (2000)

    Article  CAS  Google Scholar 

  19. Schaefer, A. L., Hanzelka, B. L., Parsek, M. R. & Greenberg, E. P. Detection, purification, and structural elucidation of the acylhomoserine lactone inducer of Vibrio fischeri luminescence and other related molecules. Methods Enzymol. 305, 288–301 (2000)

    Article  CAS  Google Scholar 

  20. Hasty, J., McMillen, D. & Collins, J. J. Engineered gene circuits. Nature 420, 224–230 (2002)

    Article  ADS  CAS  Google Scholar 

  21. Weiss, R. et al. Genetic circuit building blocks for cellular computation, communications, and signal processing. Nat. Comput. 2, 47–84 (2003)

    Article  Google Scholar 

  22. Wall, M. E., Hlavacek, W. S. & Savageau, M. A. Design of gene circuits: lessons from bacteria. Nature Rev. Genet. 5, 34–42 (2004)

    Article  CAS  Google Scholar 

  23. Lewis, K. Programmed death in bacteria. Microbiol. Mol. Biol. Rev. 64, 503–514 (2000)

    Article  CAS  Google Scholar 

  24. Ameisen, J. C. On the origin, evolution, and nature of programmed cell death: a timeline of four billion years. Cell Death Differ. 9, 367–393 (2002)

    Article  CAS  Google Scholar 

  25. Steinmoen, H., Knutsen, E. & Havarstein, L. S. Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population. Proc. Natl Acad. Sci. USA 99, 7681–7686 (2002)

    Article  ADS  CAS  Google Scholar 

  26. Bulter, T. et al. Design of artificial cell–cell communication using gene and metabolic networks. Proc. Natl Acad. Sci. USA 101, 2299–2304 (2004)

    Article  ADS  CAS  Google Scholar 

  27. Gerchman, Y. & Weiss, R. Teaching bacteria a new language. Proc. Natl Acad. Sci. USA 101, 2221–2222 (2004)

    Article  ADS  CAS  Google Scholar 

  28. Weiss, R. & Knight, T. in Sixth International Workshop on DNA-Based Computers, DNA 2000 (eds Codon, A. & Rozenberg, G.) 1–16 (Springer, New York, 2000)

    Google Scholar 

  29. Egland, K. A. & Greenberg, E. P. Quorum sensing in Vibrio fischeri: analysis of the LuxR DNA binding region by alanine-scanning mutagenesis. J. Bacteriol. 183, 382–386 (2001)

    Article  CAS  Google Scholar 

  30. Zhu, J. & Winans, S. C. Autoinducer binding by the quorum-sensing regulator TraR increases affinity for target promoters in vitro and decreases TraR turnover rates in whole cells. Proc. Natl Acad. Sci. USA 96, 4832–4837 (1999)

    Article  ADS  CAS  Google Scholar 

  31. You, L., Hoonlor, A. & Yin, J. Modeling biological systems using Dynetica—a simulator of dynamic networks. Bioinformatics 19, 435–436 (2003)

    Article  CAS  Google Scholar 

  32. Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res. 25, 1203–1210 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y. Wang, R. Georgescu, S. Thiberge, F. Balagadde and S. Maerkle assisted with preliminary characterization of the circuit. C. Collins constructed plasmids pLuxR, pLuxR2 and pluxGFPuv. We also thank Y. Yokobayashi, M. Raizada, J. Leadbetter, M. Elowitz and M. Savageau for discussions or comments on the manuscript. This material is based on work supported by the Defense Advanced Research Projects Agency (DARPA). Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the DARPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frances H. Arnold.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

You, L., Cox, R., Weiss, R. et al. Programmed population control by cell–cell communication and regulated killing. Nature 428, 868–871 (2004). https://doi.org/10.1038/nature02491

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02491

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing