Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Capacity limit of visual short-term memory in human posterior parietal cortex

Abstract

At any instant, our visual system allows us to perceive a rich and detailed visual world. Yet our internal, explicit representation of this visual world is extremely sparse: we can only hold in mind a minute fraction of the visual scene1,2. These mental representations are stored in visual short-term memory (VSTM). Even though VSTM is essential for the execution of a wide array of perceptual and cognitive functions3,4,5, and is supported by an extensive network of brain regions6,7,8,9, its storage capacity is severely limited10,11,12,13. With the use of functional magnetic resonance imaging, we show here that this capacity limit is neurally reflected in one node of this network: activity in the posterior parietal cortex is tightly correlated with the limited amount of scene information that can be stored in VSTM. These results suggest that the posterior parietal cortex is a key neural locus of our impoverished mental representation of the visual world.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Trial design.
Figure 2: Behavioural performance and IPS/IOS response functions in VSTM and IM experiments.
Figure 3: Brain activation time courses.
Figure 4: Response time courses during the encoding, maintenance and retrieval phases of a VSTM task with extended retention interval (9,200 ms).

Similar content being viewed by others

References

  1. Rensink, R. A. Change detection. Annu. Rev. Psychol. 53, 245–277 (2002)

    Article  Google Scholar 

  2. Simons, D. & Levin, D. Change blindness. Trends Cogn. Sci. 1, 261–267 (1997)

    Article  CAS  Google Scholar 

  3. Chun, M. M. & Potter, M. C. A two-stage model for multiple target detection in rapid serial visual presentation. J. Exp. Psychol. Hum. Percept. Perform. 21, 109–127 (1995)

    Article  CAS  Google Scholar 

  4. Jolicoeur, P., Dell' Acqua, R. & Crebolder, J. M. in The Limits of Attention: Temporal Constraints in Human Information Processing (ed. Shapiro, K.) 82–99 (Oxford Univ. Press, 2001)

    Book  Google Scholar 

  5. Wheeler, M. E. & Treisman, A. M. Binding in short-term visual memory. J. Exp. Psychol. Gen. 131, 48–64 (2002)

    Article  Google Scholar 

  6. Goldman-Rakic, P. S. in Handbook of Physiology: The Nervous System, Higher Functions of the Brain (eds Mountcastle, V. B. & Plum, F.) 373–417 (American Physiological Society, Bethesda, Maryland, 1987)

    Google Scholar 

  7. Ungerleider, L. G., Courtney, S. M. & Haxby, J. V. A neural system for human visual working memory. Proc. Natl Acad. Sci. USA 95, 883–890 (1998)

    Article  ADS  CAS  Google Scholar 

  8. Callicott, J. H. et al. Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cereb. Cortex 9, 20–26 (1999)

    Article  CAS  Google Scholar 

  9. Linden, D. E. et al. Cortical capacity constraints for visual working memory: Dissociation of fMRI load effects in a fronto-parietal network. Neuroimage 20, 1518–1530 (2003)

    Article  Google Scholar 

  10. Duncan, J. et al. Systematic analysis of deficits in visual attention. J. Exp. Psychol. Gen. 128, 450–478 (1999)

    Article  CAS  Google Scholar 

  11. Cowan, N. The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behav. Brain Sci. 24, 87–114 (2001)

    Article  CAS  Google Scholar 

  12. Pashler, H. Familiarity and visual change detection. Percept. Psychophys. 44, 369–378 (1988)

    Article  CAS  Google Scholar 

  13. Vogel, E. K., Woodman, G. F. & Luck, S. J. Storage of features, conjunctions and objects in visual working memory. J. Exp. Psychol. Hum. Percept. Perform. 27, 92–114 (2001)

    Article  CAS  Google Scholar 

  14. Cohen, J. D. et al. Temporal dynamics of brain activation during a working memory task. Nature 386, 604–608 (1997)

    Article  ADS  CAS  Google Scholar 

  15. Phillips, W. A. On the distinction between sensory storage and short-term visual memory. Percept. Psychophys. 16, 283–290 (1974)

    Article  Google Scholar 

  16. Coltheart, M. in New Horizons in Psychology (ed. Dodwell, P. C.) 62–85 (Harmondsworth, Penguin, 1972)

    Google Scholar 

  17. Baddeley, A. Working memory. Science 255, 556–559 (1992)

    Article  ADS  CAS  Google Scholar 

  18. Smith, E. E. & Jonides, J. Neuroimaging analyses of human working memory. Proc. Natl Acad. Sci. USA 95, 12061–12068 (1998)

    Article  ADS  CAS  Google Scholar 

  19. Rosnow, R. L. & Rosenthal, R. Contrasts and interactions redux: Five easy pieces. Psychol. Sci. 7, 253–257 (1996)

    Article  Google Scholar 

  20. Courtney, S. M., Ungerleider, L. G., Keil, K. & Haxby, J. V. Transient and sustained activity in a distributed neural system for human working memory. Nature 386, 608–611 (1997)

    Article  ADS  CAS  Google Scholar 

  21. Pessoa, K., Gutierrez, E., Bandettini, P. A. & Ungerleider, L. G. Neural correlates of visual working memory: fMRI amplitude predicts task performance. Neuron 35, 975–987 (2002)

    Article  CAS  Google Scholar 

  22. Zarahn, E., Aguirre, G. & D'Esposito, M. A trial-based experimental design for fMRI. Neuroimage 6, 122–138 (1997)

    Article  CAS  Google Scholar 

  23. Friedman-Hill, S. R., Robertson, L. C. & Treisman, A. Parietal contributions to visual feature binding: Evidence from a patient with bilateral lesions. Science 269, 853–855 (1995)

    Article  ADS  CAS  Google Scholar 

  24. Shafritz, K. M., Gore, J. C. & Marois, R. The role of the parietal cortex in visual feature binding. Proc. Natl Acad. Sci. USA 99, 10917–10922 (2002)

    Article  ADS  CAS  Google Scholar 

  25. Haxby, J. V. et al. Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proc. Natl Acad. Sci. USA 88, 1621–1625 (1991)

    Article  ADS  CAS  Google Scholar 

  26. McKeefry, D. J. & Zeki, S. The position and topography of the human colour centre as revealed by functional magnetic resonance imaging. Brain 120, 2229–2242 (1997)

    Article  Google Scholar 

  27. Curtis, C. E. & D'Esposito, M. Persistent activity in the prefrontal cortex during working memory. Trends Cogn. Sci. 7, 415–423 (2003)

    Article  Google Scholar 

  28. Beck, D. M., Rees, G., Frith, C. D. & Lavie, N. Neural correlates of change detection and change blindness. Nature Neurosci. 4, 645–650 (2001)

    Article  CAS  Google Scholar 

  29. Gottlieb, J. P., Kusunoki, M. & Goldberg, M. E. The representation of visual salience in monkey parietal cortex. Nature 391, 481–484 (1998)

    Article  ADS  CAS  Google Scholar 

  30. Kourtzi, Z. & Kanwisher, N. Representation of perceived object shape by the human lateral occipital complex. Science 293, 1506–1509 (2001)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Gauthier, M. Chun, G. Logan and J. Schall for comments on earlier versions of this manuscript, and D. Nikolaiczyk-Stocks and A. Snyder for expert technical assistance. This work was supported by a grant from the NSF to R.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Marois.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Todd, J., Marois, R. Capacity limit of visual short-term memory in human posterior parietal cortex. Nature 428, 751–754 (2004). https://doi.org/10.1038/nature02466

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02466

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing