Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The decline and fate of an iron-induced subarctic phytoplankton bloom

Abstract

Iron supply has a key role in stimulating phytoplankton blooms in high-nitrate low-chlorophyll oceanic waters1,2,3,4,5. However, the fate of the carbon fixed by these blooms, and how efficiently it is exported into the ocean's interior, remains largely unknown1,2,3,4,5. Here we report on the decline and fate of an iron-stimulated diatom bloom in the Gulf of Alaska. The bloom terminated on day 18, following the depletion of iron and then silicic acid, after which mixed-layer particulate organic carbon (POC) concentrations declined over six days. Increased particulate silica export via sinking diatoms was recorded in sediment traps at depths between 50 and 125 m from day 21, yet increased POC export was not evident until day 24. Only a small proportion of the mixed-layer POC was intercepted by the traps, with more than half of the mixed-layer POC deficit attributable to bacterial remineralization and mesozooplankton grazing. The depletion of silicic acid and the inefficient transfer of iron-increased POC below the permanent thermocline have major implications both for the biogeochemical interpretation of times of greater iron supply in the geological past6,7, and also for proposed geo-engineering schemes to increase oceanic carbon sequestration3,8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time series of ‘In’ (patch centre, solid symbols) and ‘Out’ (surrounding waters, open symbols) mean mixed layer properties.
Figure 2: Export and remineralization at the patch centre during the bloom decline.

Similar content being viewed by others

References

  1. Coale, K. H. et al. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature 383, 495–501 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Boyd, P. W. et al. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407, 695–702 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Buesseler, K. O. & Boyd, P. W. Will ocean fertilization work? Science 300, 67–68 (2003)

    Article  CAS  PubMed  Google Scholar 

  4. Gervais, F., Riebesell, U. & Gorbunov, M. Y. Changes in primary productivity and chlorophyll a in response to iron fertilization in the Southern Polar Frontal Zone. Limnol. Oceanogr. 47, 1324–1335 (2002)

    Article  ADS  CAS  Google Scholar 

  5. Tsuda, A. et al. A mesoscale iron enrichment in the western Subarctic Pacific induces a large centric diatom bloom. Science 300, 958–961 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Martin, J. H. Glacial-interglacial CO2 change: The iron hypothesis. Paleoceanography 5, 1–13 (1990)

    Article  ADS  Google Scholar 

  7. Matsumoto, K., Sarmiento, J. L. & Brzezinski, M. A. Silicic acid leakage from the Southern Ocean: A possible explanation for glacial atmospheric pCO2 . Glob. Biogeochem. Cycles 16, doi:10.1029/2001GB001442 (2002)

  8. Chisholm, S. W., Falkowski, P. G. & Cullen, J. J. Oceans—Discrediting ocean fertilization. Science 294, 309–310 (2001)

    Article  CAS  PubMed  Google Scholar 

  9. Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999)

    Article  ADS  CAS  Google Scholar 

  10. Tabata, S. The general circulation of the Pacific Ocean and a brief account of the oceanographic structure of the North Pacific Ocean. Part I—Circulation and volume transports. Atmosphere 13, 133–168 (1975)

    Article  Google Scholar 

  11. Nishioka, J., Takeda, S., Wong, C. S. & Johnson, W. K. Size-fractionated iron concentrations in the northeast Pacific Ocean: distribution of soluble and small colloidal iron. Mar. Chem. 74, 157–179 (2001)

    Article  CAS  Google Scholar 

  12. LaRoche, J., Boyd, P. W., McKay, R. M. L. & Geider, R. J. Flavodoxin as an in situ marker for iron stress in phytoplankton. Nature 382, 802–805 (1996)

    Article  ADS  CAS  Google Scholar 

  13. Cullen, J. J. Hypothesis to explain high-nutrient conditions in the open sea. Limnol. Oceanogr. 36, 1578–1599 (1991)

    Article  ADS  CAS  Google Scholar 

  14. Strathmann, R. R. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol. Oceanogr. 12, 411–418 (1967)

    Article  ADS  CAS  Google Scholar 

  15. Komar, P. D., Morse, A. P., Small, L. F. & Fowler, S. W. An analysis of sinking rates of natural copepod and euphausiid fecal pellets. Limnol. Oceanogr. 26, 172–180 (1981)

    Article  ADS  Google Scholar 

  16. Bidle, K. D., Manganelli, M. & Azam, F. Regulation of oceanic silicon and carbon preservation by temperature control on bacteria. Science 298, 1980–1984 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Smith, D. C., Simon, M., Alldredge, A. L. & Azam, F. Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359, 139–142 (1992)

    Article  ADS  CAS  Google Scholar 

  18. Dagg, M. Sinking particles as a possible source of nutrition for the large calanoid copepod Neocalanus cristatus in the sub-arctic Pacific Ocean. Deep-Sea Res. I 40, 1431–1445 (1993)

    Article  Google Scholar 

  19. Buesseler, K. O., Michaels, A. F., Siegel, D. A. & Knap, A. H. A 3-dimensional time-dependent approach to calibrating sediment trap fluxes. Glob. Biogeochem. Cycles 8, 179–193 (1994)

    Article  ADS  CAS  Google Scholar 

  20. Treguer, P. et al. The silica balance in the world ocean: a re-estimate. Science 268, 375–379 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Sunda, W. G. & Huntsman, S. A. Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar. Chem. 50, 189–206 (1995)

    Article  CAS  Google Scholar 

  22. Buesseler, K. O. The decoupling of production and particulate export in the surface ocean. Glob. Biogeochem. Cycles 12, 297–310 (1998)

    Article  ADS  CAS  Google Scholar 

  23. Harrison, K. G. Role of increased marine silica input on paleo-pCO2 levels. Paleoceanography 15, 292–298 (2000)

    Article  ADS  Google Scholar 

  24. Law, C. S., Abraham, E. R., Watson, A. J. & Liddicoat, M. Vertical diffusion and nutrient supply to the surface mixed layer of the Antarctic Circumpolar Current. J. Geophys. Res. 108, doi:10.1029/2002JC001604 (2003)

  25. Abraham, E. R. et al. Importance of stirring in the development of an iron-fertilized phytoplankton bloom. Nature 407, 727–730 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Honda, M. C. et al. The biological pump in the northwestern North Pacific based on fluxes and major components of particulate matter obtained by sediment-trap experiments (1997–2000). Deep-Sea Res. II 49, 5595–5625 (2002)

    ADS  CAS  Google Scholar 

  27. Bishop, J. K. B. Transmissiometer measurement of POC. Deep-Sea Res. I 46, 353–369 (1999)

    Article  CAS  Google Scholar 

  28. Tsuda, A. & Sugisaki, H. In-situ grazing rate of the copepod population in the western subarctic North Pacific during spring. Mar. Biol. 120, 203–210 (1994)

    Article  Google Scholar 

  29. Rivkin, R. & Legendre, L. Biogenic carbon cycling in the upper ocean: effects of microbial respiration. Science 291, 2398–2400 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Siegel, D. A., Granata, T. C., Michaels, A. F. & Dickey, T. D. Mesoscale eddy diffusion, particle sinking, and the interpretation of sediment trap data. J. Geophys. Res. 95, 5305–5311 (1990)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the officers and crews and scientists on board the John P. Tully, El Puma and Kaiyo Maru. We are grateful to S. Toews for shoreside logistical support. The manuscript was improved by comments from K. Currie, R. Frew, C. Hurd, P. Boyd, D. Hutchins and T. Trull. This study was supported by NSERC Canada as part of the C-SOLAS programme, CFCAS, DFO PERD (Canada), the New Zealand PGSF (Ocean Ecosystems), and the Global Environmental Research Fund from the Ministry of Environment, the Fisheries Agency, and the Central Research Institute of Electric Power Industry research funding (Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip W. Boyd.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figures

Supplementary figure 1: A) An fCO2 contour plot (µatm) of the patch on day 18; B) Algal photosynthetic competence (Fv/Fm, mean mixed-layer values) in the mixed-layer for IN and OUT waters; Supplementary Figure 2: SeaWiFS Ocean Colour images on day 19 and day 24 showing the rapid decline of the bloom; Supplementary Figure 3: Density profiles for IN patch from days 16-25. (PPT 194 kb)

Supplementary Figure Legends (DOC 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyd, P., Law, C., Wong, C. et al. The decline and fate of an iron-induced subarctic phytoplankton bloom. Nature 428, 549–553 (2004). https://doi.org/10.1038/nature02437

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02437

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing