Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Determination of electron orbital magnetic moments in carbon nanotubes

Abstract

The remarkable transport properties of carbon nanotubes (CNTs) are determined by their unusual electronic structure1. The electronic states of a carbon nanotube form one-dimensional electron and hole sub-bands, which, in general, are separated by an energy gap2,3. States near the energy gap are predicted4,5 to have an orbital magnetic moment, µorb, that is much larger than the Bohr magneton (the magnetic moment of an electron due to its spin). This large moment is due to the motion of electrons around the circumference of the nanotube, and is thought to play a role in the magnetic susceptibility of CNTs6,7,8,9 and the magnetoresistance observed in large multiwalled CNTs10,11,12. But the coupling between magnetic field and the electronic states of individual nanotubes remains to be quantified experimentally. Here we report electrical measurements of relatively small diameter (2–5 nm) individual CNTs in the presence of an axial magnetic field. We observe field-induced energy shifts of electronic states and the associated changes in sub-band structure, which enable us to confirm quantitatively the predicted values for µorb.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nanotube states near the bandgap and orbital magnetic moments.
Figure 2: Device geometry and band bending.
Figure 3: Effect of magnetic field on device resistance.
Figure 4: Energy levels of a nanotube quantum dot.

Similar content being viewed by others

References

  1. Sohn, L. L., Kouwenhoven, L. P. & Schon, G. (eds) Carbon Nanotubes (Springer, New York, 2001)

  2. Wildoer, J. W. G., Venema, L. C., Rinzler, A. G., Smalley, R. E. & Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59–62 (1998)

    Article  ADS  CAS  Google Scholar 

  3. Odom, T. W., Huang, J. L., Kim, P. & Lieber, C. M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391, 62–64 (1998)

    Article  ADS  CAS  Google Scholar 

  4. Ajiki, H. & Ando, T. Electronic states of carbon nanotubes. J. Phys. Soc. Jpn 62, 1255–1266 (1993)

    Article  ADS  CAS  Google Scholar 

  5. Lu, J. P. Novel magnetic-properties of carbon nanotubes. Phys. Rev. Lett. 74, 1123–1126 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Ramirez, A. P. et al. Magnetic-susceptibility of molecular carbon—nanotubes and fullerite. Science 265, 84–86 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Wang, X. K., Chang, R. P. H., Patashinski, A. & Ketterson, J. B. Magnetic-susceptibility of buckytubes. J. Mater. Res. 9, 1578–1582 (1994)

    Article  ADS  CAS  Google Scholar 

  8. Chauvet, O. et al. Magnetic anisotropies of aligned carbon nanotubes. Phys. Rev. B 52, R6963–R6966 (1995)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  9. Walters, D. A. et al. In-plane-aligned membranes of carbon nanotubes. Chem. Phys. Lett. 338, 14–20 (2001)

    Article  ADS  CAS  Google Scholar 

  10. Fujiwara, A., Tomiyama, K., Suematsu, H., Yumura, M. & Uchida, K. Quantum interference of electrons in multiwall carbon nanotubes. Phys. Rev. B 60, 13492–13496 (1999)

    Article  ADS  CAS  Google Scholar 

  11. Bachtold, A. et al. Aharonov-Bohm oscillations in carbon nanotubes. Nature 397, 673–675 (1999)

    Article  ADS  CAS  Google Scholar 

  12. Lee, J. O. et al. Observation of magnetic-field-modulated energy gap in carbon nanotubes. Solid State Commun. 115, 467–471 (2000)

    Article  ADS  CAS  Google Scholar 

  13. Kane, C. L. & Mele, E. J. Size, shape, and low energy electronic structure of carbon nanotubes. Phys. Rev. Lett. 78, 1932–1935 (1997)

    Article  ADS  CAS  Google Scholar 

  14. Yang, L. & Han, J. Electronic structure of deformed carbon nanotubes. Phys. Rev. Lett. 85, 154–157 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Minot, E. D. et al. Tuning carbon nanotube band gaps with strain. Phys. Rev. Lett. 90, 156401 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Kwon, Y. K. & Tomanek, D. Electronic and structural properties of multiwall carbon nanotubes. Phys. Rev. B 58, R16001–R16004 (1998)

    Article  ADS  CAS  Google Scholar 

  17. Zhou, C. W., Kong, J. & Dai, H. J. Intrinsic electrical properties of individual single-walled carbon nanotubes with small band gaps. Phys. Rev. Lett. 84, 5604–5607 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. de Pablo, P. J. et al. Nonlinear resistance versus length in single-walled carbon nanotubes. Phys. Rev. Lett. 88, 036804 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Yaish, Y. et al. Electrical nanoprobing of semiconducting carbon nanotubes using an atomic force microscope. Phys. Rev. Lett. 92, 046401 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Maiti, A., Svizhenko, A. & Anantram, M. P. Electronic transport through carbon nanotubes: Effects of structural deformation and tube chirality. Phys. Rev. Lett. 88, 126805 (2002)

    Article  ADS  PubMed  Google Scholar 

  21. Tans, S. J., Devoret, M. H., Groeneveld, R. J. A. & Dekker, C. Electron-electron correlations in carbon nanotubes. Nature 394, 761–764 (1998)

    Article  ADS  CAS  Google Scholar 

  22. Cobden, D. H., Bockrath, M., McEuen, P. L., Rinzler, A. G. & Smalley, R. E. Spin splitting and even-odd effects in carbon nanotubes. Phys. Rev. Lett. 81, 681–684 (1998)

    Article  ADS  CAS  Google Scholar 

  23. Sohn, L. L., Kouwenhoven, L. P. & Schon, G. (eds) Mesoscopic Electron Transport (Kluwer, Dordrecht, 1997)

  24. Liang, W. J., Bockrath, M. & Park, H. Shell filling and exchange coupling in metallic single-walled carbon nanotubes. Phys. Rev. Lett. 88, 126801 (2002)

    Article  ADS  PubMed  Google Scholar 

  25. Nygard, J., Cobden, D. H. & Lindelof, P. E. Kondo physics in carbon nanotubes. Nature 408, 342–346 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Kong, J., Soh, H. T., Cassell, A. M., Quate, C. F. & Dai, H. J. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395, 878–881 (1998)

    Article  ADS  CAS  Google Scholar 

  27. Rosenblatt, S. et al. High performance electrolyte gated carbon nanotube transistors. Nano Lett. 2, 869–872 (2002)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Ustunel, T. Arias and H. Dai for discussions. This work was supported by the NSF through the Cornell Center for Materials Research and the Center for Nanoscale Systems, and by the MARCO Focused Research Center on Materials, Structures, and Devices. Sample fabrication was performed at the Cornell node of the National Nanofabrication Users Network, funded by NSF. One of us (E.D.M.) acknowledges support by an NSF graduate fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul L. McEuen.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minot, E., Yaish, Y., Sazonova, V. et al. Determination of electron orbital magnetic moments in carbon nanotubes. Nature 428, 536–539 (2004). https://doi.org/10.1038/nature02425

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02425

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing