Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle

Abstract

The oxidation state recorded by rocks from the Earth's upper mantle can be calculated from measurements of the distribution of Fe3+ and Fe2+ between the constituent minerals1,2,3. The capacity for minerals to incorporate Fe3+ may also be a significant factor controlling the oxidation state of the mantle4,5, and high-pressure experimental measurements of this property might provide important insights into the redox state of the more inaccessible deeper mantle. Here we show experimentally that the Fe3+ content of aluminous silicate perovskite, the dominant lower-mantle mineral, is independent of oxygen fugacity. High levels of Fe3+ are present in perovskite even when it is in chemical equilibrium with metallic iron. Silicate perovskite in the lower mantle will, therefore, have an Fe3+/total Fe ratio of at least 0.6, resulting in a whole-rock ratio of over ten times that of the upper mantle5,6. Consequently, the lower mantle must either be enriched in Fe3+ or Fe3+ must form by the disproportionation of Fe2+ to produce Fe3+ plus iron metal. We argue that the lower mantle contains approximately 1 wt% of a metallic iron-rich alloy. The mantle's oxidation state and siderophile element budget have probably been influenced by the presence of this alloy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scanning (ac) and transmission (d) electron microscope images of experimental run products.
Figure 2: The variation of Al3+ and Fe3+ in silicate perovskite reported as atoms per two-cation formula unit.

Similar content being viewed by others

References

  1. O'Neill, H. St C. & Wall, V. J. The olivine-orthopyroxene-spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth's upper mantle. J. Petrol. 28, 1169–1191 (1987)

    Article  ADS  CAS  Google Scholar 

  2. Luth, R. W., Virgo, D., Boyd, F. R. & Wood, B. J. Ferric iron in mantle derived garnets: implications for thermobarometry and the oxidation state of the mantle. Contrib. Mineral. Petrol. 104, 56–72 (1990)

    Article  ADS  CAS  Google Scholar 

  3. Ballhaus, C., Berry, R. F. & Green, D. H. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contrib. Mineral. Petrol. 107, 27–40 (1991)

    Article  ADS  CAS  Google Scholar 

  4. O'Neill, H. St C. et al. Mössbauer spectroscopy of mantle transition zone phases and determination of minimum Fe3+ content. Am. Mineral. 78, 456–460 (1993)

    CAS  Google Scholar 

  5. O'Neill, H. St C. et al. Ferric Iron in the Upper Mantle and in Transition Zone Assemblages: Implications for Relative Oxygen Fugacities in the Mantle Vol. 14, 73–89 (Geophys. Monogr. 74, International Union of Geodesy and Geophysics (IUGG), Washington DC, 1993)

    Google Scholar 

  6. Canil, D. & O'Neill, H. St C. Distribution of ferric iron in some upper-mantle assemblages. J. Petrol. 37, 609–635 (1996)

    Article  ADS  CAS  Google Scholar 

  7. van Aken, P. A., Liebscher, B. & Styrsa, V. S. Quantitative determination of iron oxidation states in minerals using Fe L2,3-edge electron energy-loss near-edge structure spectroscopy. Phys. Chem. Mineral. 5, 323–327 (1998)

    Article  ADS  Google Scholar 

  8. Lauterbach, S., McCammon, C. A., van Aken, P., Langenhorst, F. & Seifert, F. Mössbauer and ELNES spectroscopy of (Mg,Fe)(Si,Al)O3 perovskite: a highly oxidised component of the lower mantle. Contrib. Mineral. Petrol. 138, 17–26 (2000)

    Article  ADS  CAS  Google Scholar 

  9. Frost, D. J. & Langenhorst, F. The effect of Al2O3 on Fe-Mg partitioning between magnesiowüstite and magnesium silicate perovskite. Earth Planet. Sci. Lett. 199, 227–241 (2002)

    Article  ADS  CAS  Google Scholar 

  10. McCammon, C. Perovskite as a possible sink for ferric iron in the lower mantle. Nature 387, 694–696 (1997)

    Article  ADS  CAS  Google Scholar 

  11. Richmond, N. C. & Brodholt, J. P. Calculated role of alumina in the incorporation of ferric iron into magnesium silicate perovskite. Am. Mineral. 83, 947–951 (1998)

    Article  ADS  CAS  Google Scholar 

  12. McDonough, W. F. & Sun, S.-s. The composition of the Earth. Chem. Geol. 120, 223–253 (1995)

    Article  ADS  CAS  Google Scholar 

  13. O'Neill, H. S. C. & Palme, H. in The Earth's Mantle (ed. Jackson, I.) 3–126 (Cambridge Univ. Press, Cambridge, 1998)

    Google Scholar 

  14. Irifune, T. Absence of an aluminous phase in the upper part of the lower mantle. Nature 370, 131–133 (1994)

    Article  ADS  CAS  Google Scholar 

  15. Kesson, S. E., Fitz Gerald, J. D. & Shelley, J. M. Mineralogy and dynamics of a pyrolite lower mantle. Nature 392, 252–255 (1998)

    Article  ADS  Google Scholar 

  16. van der Hilst, R. D., Widiyantoro, S. & Engdahl, E. R. Evidence for deep mantle circulation from global tomography. Nature 386, 578–584 (1997)

    Article  ADS  CAS  Google Scholar 

  17. Canil, D. Vanadium partitioning and the oxidation state of Archaean komatiite magmas. Nature 389, 842–845 (1997)

    Article  ADS  CAS  Google Scholar 

  18. Delano, J. W. Redox history of the Earth's interior since 3900 Ma: Implications for prebiotic molecules. Orig. Life Evol. Biosph. 31, 311–341 (2001)

    Article  ADS  CAS  Google Scholar 

  19. Wood, B. J., Pawley, A. & Frost, D. J. Water and carbon in the Earth's mantle. Phil. Trans. R. Soc. Lond. A 354, 1495–1511 (1996)

    Article  ADS  CAS  Google Scholar 

  20. Ballhaus, C. Is the upper-mantle metal-saturated? Earth Planet. Sci. Lett. 132, 75–86 (1995)

    Article  ADS  CAS  Google Scholar 

  21. Ballhaus, C. & Frost, B. R. The generation of oxidized CO2-bearing basaltic melts from reducing CH4-bearing upper-mantle sources. Geochim. Cosmochim. Acta 58, 4931–4940 (1994)

    Article  ADS  CAS  Google Scholar 

  22. Asahara, Y., Kubo, T. & Kondo, T. Phase relations of a carbonaceous chondrite at lower mantle conditions. Phys. Earth Planet. Inter. (in the press)

  23. Walter, M. J., Newsom, H. E., Ertel, W. & Holzheid, A. in Origin of the Earth and Moon (eds Canup, R. & Righter, K.) 285–289 (Univ. Arizona Press, Tucson, 2000)

    Google Scholar 

  24. Shannon, M. C. & Agee, C. B. Percolation of core melts at lower mantle conditions. Science 280, 1059–1061 (1998)

    Article  ADS  CAS  Google Scholar 

  25. Agee, C. B. & Shannon, M. C. Experimental constraints on percolative core formation at lower mantle conditions. Lunar Planet. Sci. Abstr. XXVIII, 7 (1997)

    Google Scholar 

  26. Xu, Y. S., McCammon, C. & Poe, B. T. The effect of alumina on the electrical conductivity of silicate perovskite. Science 282, 922–924 (1998)

    Article  ADS  CAS  Google Scholar 

  27. O'Neill, H. S. C. The origin of the Moon and the early history of the Earth—A chemical model. Part 2: The Earth. Geochim. Cosmochim. Acta 55, 1159–1172 (1991)

    Article  ADS  CAS  Google Scholar 

  28. Righter, K., Drake, M. J. & Yaxley, G. Prediction of siderophile element metal-silicate partition coefficients to 20 GPa and 2,800 °C: the effect of pressure, temperature, fo2 and silicate and metallic melt composition. Phys. Earth Planet. Inter. 100, 115–134 (1997)

    Article  ADS  CAS  Google Scholar 

  29. Stevenson, D. J. in Origin of the Earth (eds Newsom, H. E. & Jones, J. H.) 231–249 (Oxford Univ. Press, Oxford, 1990)

    Google Scholar 

  30. Ringwood, A. E. Chemical evolution of the terrestrial planets. Geochim. Cosmochim. Acta 30, 41–104 (1966)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Fischer, G. Herrmannsdörfer, D. Krausse and H. Schulze for technical assistance. The German Science Foundation (DFG) and the EU Access to Research Infrastructures Programme supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Frost.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frost, D., Liebske, C., Langenhorst, F. et al. Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle. Nature 428, 409–412 (2004). https://doi.org/10.1038/nature02413

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02413

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing