Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Strain-induced metal–insulator phase coexistence in perovskite manganites

Abstract

The coexistence of distinct metallic and insulating electronic phases within the same sample of a perovskite manganite1,2,3,4,5,6, such as La1-x-yPryCaxMnO3, presents researchers with a tool for tuning the electronic properties in materials. In particular, colossal magnetoresistance7 in these materials—the dramatic reduction of resistivity in a magnetic field—is closely related to the observed texture owing to nanometre- and micrometre-scale inhomogeneities1,2,3,4,5,6,8. Despite accumulated data from various high-resolution probes, a theoretical understanding for the existence of such inhomogeneities has been lacking. Mechanisms invoked so far, usually based on electronic mechanisms and chemical disorder9,10,11, have been inadequate to describe the multiscale, multiphase coexistence within a unified picture. Moreover, lattice distortions and long-range strains12,13 are known to be important in the manganites14. Here we show that the texturing can be due to the intrinsic complexity of a system with strong coupling between the electronic and elastic degrees of freedom. This leads to local energetically favourable configurations and provides a natural mechanism for the self-organized inhomogeneities over both nanometre and micrometre scales. The framework provides a physical understanding of various experimental results and a basis for engineering nanoscale patterns of metallic and insulating phases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modes and energy landscape.
Figure 2: Results of simulations for the shallow local minimum case (blue curve in Fig. 1b) on a 32 × 32 lattice with periodic boundary conditions.
Figure 3: Results of simulations for the deep local minimum case (red curve in Fig. 1b) on a 64 × 64 lattice.

Similar content being viewed by others

References

  1. Salamon, M. B. & Jaime, M. The physics of manganites: structure and transport. Rev. Mod. Phys. 73, 583–628 (2001)

    Article  ADS  CAS  Google Scholar 

  2. Uehara, M., Mori, S., Chen, C. H. & Cheong, S.-W. Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites. Nature 399, 560–563 (1999)

    Article  ADS  CAS  Google Scholar 

  3. Fäth, M. et al. Spatially inhomogeneous metal-insulator transition in doped manganites. Science 285, 1540–1542 (1999)

    Article  Google Scholar 

  4. Renner, Ch., Aeppli, G., Kim, B.-G., Soh, Y.-A. & Cheong, S.-W. Atomic-scale images of charge ordering in a mixed-valence manganite. Nature 416, 518–521 (2002)

    Article  ADS  CAS  Google Scholar 

  5. Zhang, L., Israel, C., Biswas, A., Greene, R. L. & de Lozanne, A. Direct observation of percolation in a manganite thin film. Science 298, 805–807 (2002)

    Article  ADS  CAS  Google Scholar 

  6. Mathur, N. & Littlewood, P. Mesoscopic texture in manganites. Phys. Today 56, 25–30 (2003)

    Article  ADS  CAS  Google Scholar 

  7. Jin, S. et al. Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 264, 413–415 (1994)

    Article  ADS  CAS  Google Scholar 

  8. Kim, K. H., Uehara, M. & Cheong, S.-W. High-temperature charge-ordering fluctuation in manganites. Phys. Rev. B 62, R11945–R11948 (2000)

    Article  ADS  CAS  Google Scholar 

  9. Moreo, A., Yunoki, S. & Dagotto, E. Phase separation scenario for manganese oxides and related materials. Science 283, 2034–2039 (1999)

    Article  CAS  Google Scholar 

  10. Dagotto, E., Hotta, T. & Moreo, A. Colossal magnetoresistant materials: The key role of phase separation. Phys. Rep. 344, 1–153 (2001)

    Article  ADS  CAS  Google Scholar 

  11. Burgy, J., Moreo, A. & Dagotto, E. Relevance of cooperative lattice effects and correlated disorder in phase-separation theories for CMR manganites. Phys. Rev. Lett. (submitted); preprint at 〈http://www.arXiv.org/cond-mat/0308456〉 (2003)

  12. Ahn, K. H., Lookman, T., Saxena, A. & Bishop, A. R. Atomic scale lattice distortions and domain wall profiles. Phys. Rev. B 68, 092101 (2003)

    Article  ADS  Google Scholar 

  13. Ahn, K. H., Lookman, T., Saxena, A. & Bishop, A. R. Microstructural evolution and electronic properties of antiphase boundaries in elastic materials. Phys. Rev. B (submitted); preprint at 〈http://www.arXiv.org/cond-mat/0309328〉 (2003)

  14. Millis, A. J. Lattice effects in magnetoresistive manganese perovskites. Nature 392, 147–150 (1998)

    Article  ADS  CAS  Google Scholar 

  15. Hwang, H. Y., Cheong, S.-W., Radaelli, P. G., Marezio, M. & Batlogg, B. Lattice effects on the magnetoresistance in doped LaMnO3 . Phys. Rev. Lett. 75, 914–917 (1995)

    Article  ADS  CAS  Google Scholar 

  16. Mathur, N. D. & Littlewood, P. B. The self-organised phases of manganites. Solid State Commun. 119, 271–280 (2001)

    Article  ADS  CAS  Google Scholar 

  17. Millis, A. J. Towards a classification of the effects of disorder on materials properties. Solid State Commun. 126, 3–8 (2003)

    Article  ADS  CAS  Google Scholar 

  18. Bishop, A. R., Lookman, T., Saxena, A. & Shenoy, S. R. Elasticity-driven nanoscale texturing in complex electronic materials. Europhys. Lett. 63, 289–295 (2003)

    Article  ADS  CAS  Google Scholar 

  19. Podzorov, V., Kim, B. G., Kiryukhin, V., Gershenson, M. E. & Cheong, S.-W. Martensitic accommodation strain and the metal-insulator transition in manganites. Phys. Rev. B 64, 140406 (2001)

    Article  ADS  Google Scholar 

  20. Seto, H., Noda, Y. & Yamada, Y. Precursor phenomena at martensitic phase transition in Fe-Pd alloy. II. Diffuse scattering and embryonic fluctuations. J. Phys. Soc. Jpn 59, 978–986 (1990)

    Article  ADS  CAS  Google Scholar 

  21. Ferrari, V., Towler, M. & Littlewood, P. B. Oxygen stripes in La0.5Ca0.5MnO3 from ab initio calculations. Phys. Rev. Lett. 91, 227202 (2003)

    Article  ADS  CAS  Google Scholar 

  22. Lynn, J. W. et al. Unconventional ferromagnetic transition in La1-xCaxMnO3 . Phys. Rev. Lett. 76, 4046–4049 (1996)

    Article  ADS  CAS  Google Scholar 

  23. Lynn, J. W. et al. Magnetic, structural, and spin dynamical properties of La1-xCaxMnO3 . J. Appl. Phys. 81, 5488–5490 (1997)

    Article  ADS  CAS  Google Scholar 

  24. Levy, P., Parisi, F., Granja, L., Indelicato, E. & Polla, G. Novel dynamical effects and persistent memory in phase separated manganites. Phys. Rev. Lett. 89, 137001 (2002)

    Article  ADS  CAS  Google Scholar 

  25. Tokura, Y., Kuwahara, H., Moritomo, Y., Tomioka, Y. & Asamitsu, A. Competing instabilities and metastable states in (Nd,Sm)1/2Sr1/2MnO3 . Phys. Rev. Lett. 76, 3184–3187 (1996)

    Article  ADS  CAS  Google Scholar 

  26. Kiryukhin, V. et al. An X-ray induced insulator metal transition in a magnetoresistive manganite. Nature 386, 813–815 (1997)

    Article  ADS  CAS  Google Scholar 

  27. Fiebig, M., Miyano, K., Tomioka, Y. & Tokura, Y. Visualization of the local insulator-metal transition in Pr0.7Ca0.3MnO3 . Science 280, 1925–1928 (1998)

    Article  ADS  CAS  Google Scholar 

  28. Chen, C. H. & Cheong, S.-W. Commensurate to incommensurate charge ordering and its real-space images in La0.5Ca0.5MnO3 . Phys. Rev. Lett. 76, 4042–4045 (1996)

    Article  ADS  CAS  Google Scholar 

  29. Lookman, T., Shenoy, S. R., Rasmussen, K. Ø., Saxena, A. & Bishop, A. R. Ferroelastic dynamics and strain compatibility. Phys. Rev. B 67, 024114 (2003)

    Article  ADS  Google Scholar 

  30. Rodriguez-Martinez, L. M. & Attfield, J. P. Cation disorder and size effects in magnetoresistive manganese oxide perovskites. Phys. Rev. B 54, R15622–R15625 (1996)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Saxena for discussions. The work was supported by the US DOE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. H. Ahn.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahn, K., Lookman, T. & Bishop, A. Strain-induced metal–insulator phase coexistence in perovskite manganites. Nature 428, 401–404 (2004). https://doi.org/10.1038/nature02364

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02364

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing