Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Germline stem cells and follicular renewal in the postnatal mammalian ovary

A Corrigendum to this article was published on 26 August 2004

Abstract

A basic doctrine of reproductive biology is that most mammalian females lose the capacity for germ-cell renewal during fetal life, such that a fixed reserve of germ cells (oocytes) enclosed within follicles is endowed at birth. Here we show that juvenile and adult mouse ovaries possess mitotically active germ cells that, based on rates of oocyte degeneration (atresia) and clearance, are needed to continuously replenish the follicle pool. Consistent with this, treatment of prepubertal female mice with the mitotic germ-cell toxicant busulphan eliminates the primordial follicle reserve by early adulthood without inducing atresia. Furthermore, we demonstrate cells expressing the meiotic entry marker synaptonemal complex protein 3 in juvenile and adult mouse ovaries. Wild-type ovaries grafted into transgenic female mice with ubiquitous expression of green fluorescent protein (GFP) become infiltrated with GFP-positive germ cells that form follicles. Collectively, these data establish the existence of proliferative germ cells that sustain oocyte and follicle production in the postnatal mammalian ovary.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Postnatal ovarian germ-cell dynamics.
Figure 2: Germ-cell proliferation in juvenile and young adult ovaries.
Figure 3: Meiotic entry gene expression in postnatal ovaries.
Figure 4: Busulphan eliminates the primordial follicle reserve in adult female mice.
Figure 5: GFP-transgenic germ cells form follicles in wild-type ovaries.

Similar content being viewed by others

References

  1. Zuckerman, S. The number of oocytes in the mature ovary. Recent Prog. Horm. Res. 6, 63–108 (1951)

    Google Scholar 

  2. Borum, K. Oogenesis in the mouse. A study of meiotic prophase. Exp. Cell Res. 24, 495–507 (1961)

    Article  CAS  Google Scholar 

  3. Peters, H. Migration of gonocytes into the mammalian gonad and their differentiation. Phil. Trans. R. Soc. Lond. B 259, 91–101 (1970)

    Article  ADS  CAS  Google Scholar 

  4. McLaren, A. Meiosis and differentiation of mouse germ cells. Symp. Soc. Exp. Biol. 38, 7–23 (1984)

    CAS  PubMed  Google Scholar 

  5. Anderson, L. D. & Hirshfield, A. N. An overview of follicular development in the ovary: from embryo to the fertilized ovum in vitro. Md Med. J. 41, 614–620 (1992)

    CAS  PubMed  Google Scholar 

  6. Faddy, M. J., Jones, E. C. & Edwards, R. G. An analytical model for ovarian follicle dynamics. J. Exp. Zool. 197, 173–186 (1976)

    Article  CAS  Google Scholar 

  7. Faddy, M. J., Telfer, E. & Gosden, R. G. The kinetics of pre-antral follicle development in ovaries of CBA/Ca mice during the first 14 weeks of life. Cell Tissue Kinet. 20, 551–560 (1987)

    CAS  PubMed  Google Scholar 

  8. Faddy, M. J. Follicle dynamics during ovarian ageing. Mol. Cell. Endocrinol. 163, 43–48 (2000)

    Article  CAS  Google Scholar 

  9. Perez, G. I. et al. Prolongation of ovarian lifespan into advanced chronological age by Bax-deficiency. Nature Genet. 21, 200–203 (1999)

    Article  ADS  CAS  Google Scholar 

  10. Tilly, J. L. Commuting the death sentence: how oocytes strive to survive. Nature Rev. Mol. Cell Biol. 2, 838–848 (2001)

    Article  CAS  Google Scholar 

  11. Gosden, R. G., Laing, S. C., Felicio, L. S., Nelson, J. F. & Finch, C. E. Imminent oocyte exhaustion and reduced follicular recruitment mark the transition to acyclicity in aging C57BL/6J mice. Biol. Reprod. 28, 255–260 (1983)

    Article  CAS  Google Scholar 

  12. Richardson, S. J., Senikas, V. & Nelson, J. F. Follicular depletion during the menopausal transition: evidence for accelerated loss and ultimate exhaustion. J. Clin. Endocrinol. Metab. 65, 1231–1237 (1987)

    Article  CAS  Google Scholar 

  13. Lin, H. The tao of stem cells in the germline. Annu. Rev. Genet. 31, 455–491 (1997)

    Article  CAS  Google Scholar 

  14. Spradling, A. H., Drummond-Barbosa, D. & Kai, T. Stem cells find their niche. Nature 414, 98–104 (2001)

    Article  ADS  CAS  Google Scholar 

  15. Lin, H. The stem-cell niche theory: lessons from flies. Nature Rev. Genet. 3, 931–940 (2002)

    Article  CAS  Google Scholar 

  16. Wyllie, A. H., Kerr, J. F. R. & Currie, A. R. Cell death: the significance of apoptosis. Int. Rev. Cytol. 68, 251–306 (1980)

    Article  CAS  Google Scholar 

  17. Ijiri, K. & Potten, C. S. Response of intestinal cells of differing topographical and hierarchical status to ten cytotoxic drugs and five sources of radiation. Br. J. Cancer 47, 175–185 (1983)

    Article  CAS  Google Scholar 

  18. Bursch, W., Paffe, S., Putz, B., Barthel, G. & Schulte-Hermann, R. Determination of the length of the histological stages of apoptosis in normal liver and in altered hepatic foci of rats. Carcinogenesis 11, 847–853 (1990)

    Article  CAS  Google Scholar 

  19. Ratts, V. S., Flaws, J. A., Kolp, R., Sorenson, C. M. & Tilly, J. L. Ablation of bcl-2 gene expression decreases the numbers of oocytes and primordial follicles established in the post-natal female mouse gonad. Endocrinology 136, 3665–3668 (1995)

    Article  CAS  Google Scholar 

  20. Pepling, M. E. & Spradling, A. C. Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles. Dev. Biol. 234, 339–351 (2001)

    Article  CAS  Google Scholar 

  21. Mattison, D. R. Morphology of oocyte and follicle destruction by polycyclic aromatic hydrocarbons in mice. Toxicol. Appl. Pharmacol. 53, 249–259 (1980)

    Article  CAS  Google Scholar 

  22. Matikainen, T. et al. Aromatic hydrocarbon receptor-driven Bax gene expression is required for premature ovarian failure caused by biohazardous environmental chemicals. Nature Genet. 28, 355–360 (2001)

    Article  CAS  Google Scholar 

  23. Canning, J., Takai, Y. & Tilly, J. L. Evidence for genetic modifiers of ovarian follicular endowment and development from studies of five inbred mouse strains. Endocrinology 144, 9–12 (2003)

    Article  CAS  Google Scholar 

  24. Crone, M., Levy, E. & Peters, H. The duration of the premeiotic DNA synthesis in mouse oocytes. Exp. Cell Res. 39, 678–688 (1965)

    Article  CAS  Google Scholar 

  25. Morita, Y. et al. Requirement for phosphatidylinositol-3′-kinase in cytokine-mediated germ cell survival during fetal oogenesis in the mouse. Endocrinology 140, 941–949 (1999)

    Article  CAS  Google Scholar 

  26. Fujiwara, Y. et al. Isolation of a DEAD-family protein gene that encodes a murine homolog of Drosophila vasa and its specific expression in germ cell lineage. Proc. Natl Acad. Sci. USA 91, 12258–12262 (1994)

    Article  ADS  CAS  Google Scholar 

  27. Noce, T., Okamoto-Ito, S. & Tsunekawa, N. Vasa homolog genes in mammalian germ cell development. Cell Struct. Funct. 26, 131–136 (2001)

    Article  CAS  Google Scholar 

  28. Selden, J. R. et al. Statistical confirmation that immunofluorescent detection of DNA repair in human fibroblasts by measurement of bromodeoxyuridine incorporation is stoichiometric and sensitive. Cytometry 14, 154–167 (1993)

    Article  CAS  Google Scholar 

  29. Davis, A. F. & Clayton, D. A. In situ localization of mitochondrial DNA replication in intact mammalian cells. J. Cell Biol. 135, 883–893 (1996)

    Article  CAS  Google Scholar 

  30. Yuan, L. et al. The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Mol. Cell 5, 73–83 (2000)

    Article  CAS  Google Scholar 

  31. Yuan, L. et al. Female germ cell aneuploidy and embryo death in mice lacking the meiosis-specific protein SCP3. Science 296, 1115–1118 (2002)

    Article  ADS  CAS  Google Scholar 

  32. Cohen, P. & Pollard, J. W. Regulation of meiotic recombination and prophase I progression in mammals. Bioessays 23, 996–1009 (2001)

    Article  CAS  Google Scholar 

  33. Gosden, R., Clarke, H. & Miller, D. in Reproductive Medicine—Molecular, Cellular and Genetic Fundamentals (ed. Fauser, B. C. J. M.) 365–380 (Parthenon, New York, 2003)

    Google Scholar 

  34. Bucci, L. R. & Meistrich, M. L. Effects of busulfan on murine spermatogenesis: cytotoxicity, sterility, sperm abnormalities, and dominant lethal mutations. Mutat. Res. 176, 259–268 (1987)

    Article  CAS  Google Scholar 

  35. Brinster, R. L. & Zimmermann, J. W. Spermatogenesis following male germ-cell transplantation. Proc. Natl Acad. Sci. USA 91, 11298–11302 (1994)

    Article  ADS  CAS  Google Scholar 

  36. Brinster, C. J. et al. Restoration of fertility by germ cell transplantation requires effective recipient preparation. Biol. Reprod. 69, 412–420 (2003)

    Article  CAS  Google Scholar 

  37. Pelloux, M. C., Picon, R., Gangnerau, M. N. & Darmoul, D. Effects of busulphan on ovarian folliculogenesis, steroidogenesis and anti-Müllerian activity of rat neonates. Acta Endocrinol. 118, 218–226 (1988)

    Article  CAS  Google Scholar 

  38. Generoso, W. M., Stout, S. K. & Huff, S. W. Effects of alkylating agents on reproductive capacity of adult female mice. Mutat. Res. 13, 171–184 (1971)

    Article  CAS  Google Scholar 

  39. Shiromizu, K., Thorgeirsson, S. S. & Mattison, D. R. Effect of cyclophosphamide on oocyte and follicle number in Sprague–Dawley rats, C57BL/6N and DBA/2N mice. Pediatr. Pharmacol. 4, 213–221 (1984)

    CAS  Google Scholar 

  40. Hadjantonakis, A. K., Gertsenstein, M., Ikawa, M., Okabe, M. & Nagy, A. Generating green fluorescent mice by germline transmission of green fluorescent ES cells. Mech. Dev. 76, 79–90 (1998)

    Article  CAS  Google Scholar 

  41. Nagano, M. C. Homing efficiency and proliferation kinetics of male germ line stem cells following transplantation in mice. Biol. Reprod. 69, 701–707 (2003)

    Article  CAS  Google Scholar 

  42. Szilvassy, S. J., Ragland, P. L., Miller, C. L. & Eaves, C. J. The marrow homing efficiency of murine hematopoietic stem cells remains constant during ontogeny. Exp. Hematol. 31, 331–338 (2003)

    Article  Google Scholar 

  43. Torrente, Y. et al. Identification of a putative pathway for the muscle homing of stem cells in a muscular dystrophy model. J. Cell Biol. 162, 511–520 (2003)

    Article  CAS  Google Scholar 

  44. Oh, H. et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc. Natl Acad. Sci. USA 100, 12313–12318 (2003)

    Article  ADS  CAS  Google Scholar 

  45. Pearl, R. & Schoppe, W. F. Studies on the physiology of reproduction in the domestic fowl. J. Exp. Zool. 34, 101–118 (1921)

    Article  Google Scholar 

  46. Tilly, J. L. Ovarian follicle counts—not as simple as 1, 2, 3. Reprod. Biol. Endocrinol. 1, 11 (2003)

    Article  Google Scholar 

  47. Walpita, D., Plug, A. W., Neff, N. F., German, J. & Ashley, T. Bloom's syndrome protein, BLM, colocalizes with replication protein A in meiotic prophase nuclei of mammalian spermatocytes. Proc. Natl Acad. Sci. USA 96, 5622–5627 (1999)

    Article  ADS  CAS  Google Scholar 

  48. Russell, L. B., Hunsicker, P. R., Hack, A. M. & Ashley, T. Effect of the topoisomerase-II inhibitor etoposide on meiotic recombination in male mice. Mutat. Res. 464, 201–212 (2000)

    Article  CAS  Google Scholar 

  49. Foley, J. G. D. & Bard, J. B. L. Apoptosis in the cortex of the developing mouse kidney. J. Anat. 201, 477–484 (2002)

    Article  Google Scholar 

  50. Walter, I. et al. Rapid and sensitive detection of enhanced green fluorescent protein expression in paraffin sections by confocal laser scanning microscopy. Histochem. J. 32, 99–103 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Morita for technical assistance; T. Noce for MVH antiserum; T. Ashley for SCP3 antiserum; and I. Schiff and F. Frigoletto Jr for critical reading of the manuscript before its submission. This work was supported by the National Institute on Aging and by Vincent Memorial Research Funds. This study was conducted while J.L.T. was an Investigator of the Steven and Michele Kirsch Foundation, and while J.J. was a Research Fellow supported by The Lalor Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan L. Tilly.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Information

This includes supplementary methods and supplementary figure legends. (DOC 55 kb)

Supplementary Figure 1

Grafted wild-type ovarian tissue adheres to transgenic host ovarian tissue and becomes vascularized. (JPG 48 kb)

Supplementary Figure 2

Wild-type ovarian tissue exhibits a low level of background autofluorescence. (JPG 53 kb)

Supplementary Figure 3

Additional example of folliculogenesis in grafted ovarian tissue. (JPG 31 kb)

Supplementary Figure 4

Postnatal ovarian expression of stem cell-associated genes. (JPG 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, J., Canning, J., Kaneko, T. et al. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature 428, 145–150 (2004). https://doi.org/10.1038/nature02316

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02316

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing