Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Seismic reflection imaging of two megathrust shear zones in the northern Cascadia subduction zone

Abstract

At convergent continental margins, the relative motion between the subducting oceanic plate and the overriding continent is usually accommodated by movement along a single, thin interface known as a megathrust1. Great thrust earthquakes occur on the shallow part of this interface where the two plates are locked together2. Earthquakes of lower magnitude occur within the underlying oceanic plate, and have been linked to geochemical dehydration reactions caused by the plate's descent3,4,5,6,7. Here I present deep seismic reflection data from the northern Cascadia subduction zone that show that the inter-plate boundary is up to 16 km thick and comprises two megathrust shear zones that bound a >5-km-thick, 110-km-wide region of imbricated crustal rocks. Earthquakes within the subducting plate occur predominantly in two geographic bands where the dip of the plate is inferred to increase as it is forced around the edges of the imbricated inter-plate boundary zone. This implies that seismicity in the subducting slab is controlled primarily by deformation in the upper part of the plate. Slip on the shallower megathrust shear zone, which may occur by aseismic slow slip, will transport crustal rocks into the upper mantle above the subducting oceanic plate and may, in part, provide an explanation for the unusually low seismic wave speeds that are observed there8,9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of the northern Cascadia subduction zone showing the distribution of inslab earthquakes (filled black circles) along the margin.
Figure 2: Composite seismic cross-section across the Cascadia forearc region in the vicinity of southern Vancouver Island.
Figure 3: Composite seismic section near the west coast of Vancouver Island.
Figure 4: Schematic cross-section of the northern Cascadia convergent margin at southern Vancouver Island.

Similar content being viewed by others

References

  1. Rogers, G. C. An assessment of the megathrust earthquake potential of the Cascadia subduction zone. Can. J. Earth Sci. 26, 844–852 (1988)

    Article  Google Scholar 

  2. Hyndman, R. D. & Wang, K. The rupture zone of Cascadia great earthquakes from current deformation and the thermal regime. J. Geophys. Res. 100, 22133–22154 (1995)

    Article  ADS  Google Scholar 

  3. Kirby, S. H. et al. in Subduction: Top to Bottom (ed. Bebout, G. E.) 195–214 (American Geophysical Union, Washington DC, 1996)

    Google Scholar 

  4. Peacock, S. M. & Wang, K. Seismic consequences of warm versus cool subduction metamorphism: Examples from southwest and northeast Japan. Science 286, 937–939 (1999)

    Article  CAS  Google Scholar 

  5. Peacock, S. M. Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology 29, 299–302 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Hacker, B. R., Peacock, S. M., Abers, G. A. & Holloway, S. D. Subduction factory 2. Are intermediate-depth earthquakes linked to metamorphic dehydration reactions? J. Geophys. Res. 108, doi:10.1029/2001JB001129 (2003)

  7. Preston, L. A., Creager, K. C., Crosson, R. S., Brocher, T. M. & Tréhu, A. M. Intraslab earthquakes: Dehydration of the Cascadia slab. Science 302, 1197–1200 (2003)

    Article  ADS  CAS  Google Scholar 

  8. Stanley, D., Villasenor, A. & Benz, H. Subduction Zone and Crustal Dynamics of Western Washington: A Tectonic Model for Earthquake Hazards Evaluation Open File Report 99–311 (US Geological Survey, Reston, 1999)

    Google Scholar 

  9. Ramachandran, K. Velocity Structure of S.W. British Columbia and N.W. Washington from 3-D Non-linear Seismic Tomography Thesis, Univ. Victoria (2001)

    Google Scholar 

  10. Spence, G. D., Clowes, R. M. & Ellis, R. M. Seismic structure across the active subduction zone of western Canada. J. Geophys. Res. 90, 6754–6772 (1985)

    Article  ADS  Google Scholar 

  11. Clowes, R. M., Yorath, C. J. & Hyndman, R. D. Reflection mapping across the convergent margin of western Canada. Geophys. J. R. Astron. Soc. 89, 79–84 (1987)

    Article  ADS  Google Scholar 

  12. Green, A. G. et al. Seismic reflection imaging of the subducting Juan de Fuca plate. Nature 319, 210–213 (1986)

    Article  ADS  Google Scholar 

  13. Clowes, R. M. et al. LITHOPROBE—southern Vancouver Island: Cenozoic subduction complex imaged by deep seismic reflections. Can. J. Earth Sci. 24, 31–51 (1987)

    Article  ADS  Google Scholar 

  14. Calvert, A. J. & Clowes, R. M. Deep, high-amplitude reflections from a major shear zone above the subducting Juan de Fuca plate. Geology 18, 1091–1094 (1990)

    Article  ADS  Google Scholar 

  15. Calvert, A. J. Seismic reflection constraints on imbrication and underplating of the northern Cascadia convergent margin. Can. J. Earth Sci. 33, 1294–1307 (1996)

    Article  ADS  Google Scholar 

  16. Nedimović, M. R., Hyndman, R. D., Ramachandran, K. & Spence, G. D. Reflection signature of seismic and aseismic slip on the northern Cascadia subduction interface. Nature 424, 416–420 (2003)

    Article  ADS  Google Scholar 

  17. Hasselgren, E. O. & Clowes, R. M. Crustal structure of northern Juan de Fuca plate from multichannel seismic reflection data. J. Geophys. Res. 100, 6469–6486 (1994)

    Article  ADS  Google Scholar 

  18. Fisher, M. A. et al. Seismic survey probes urban earthquake hazards in Pacific Northwest. Eos 80, 16–17 (1999)

    ADS  Google Scholar 

  19. Brocher, T. M. et al. Wide-angle Seismic Recordings from the 1998 Seismic Hazards Investigation in Puget Sound (SHIPS), Western Washington and British Columbia Open File Report 99–314 (US Geological Survey, Reston, 1999)

    Google Scholar 

  20. Dehler, S. A. & Clowes, R. M. Integrated geophysical modelling of terranes and other structures along the western Canadian margin. Can. J. Earth Sci. 29, 1492–1508 (1992)

    Article  ADS  Google Scholar 

  21. Cassidy, J. F. & Ellis, R. M. Shear wave constraints on a deep crustal reflective zone beneath Vancouver Island. J. Geophys. Res. 96, 19843–19851 (1991)

    Article  ADS  Google Scholar 

  22. Yorath, C. J. et al. Marine Multichannel Seismic Reflection, Gravity and Magnetic Profiles—Vancouver Island Continental Margin and Juan De Fuca Ridge (Open File Report 1661, Geological Survey of Canada, Vancouver, 1987)

    Book  Google Scholar 

  23. Hyndman, R. D. Dipping reflectors, electrically conductive zones and free water beneath a subduction zone. J. Geophys. Res. 93, 13391–13405 (1988)

    Article  ADS  Google Scholar 

  24. Dragert, H., Wang, K. & James, T. S. A silent slip event on the deeper Cascadia subduction interface. Science 292, 1525–1528 (2001)

    Article  ADS  CAS  Google Scholar 

  25. Rogers, G. & Dragert, H. Episodic tremor and slip on the Cascadia subduction zone: The chatter of silent slip. Science 300, 1942–1943 (2003)

    Article  ADS  CAS  Google Scholar 

  26. Kao, H., Shan, S.-J., Rogers, G., Cassidy, J. F. & Dragert, H. Temporal and spatial distribution of the tremors in the episodic tremor and slip (ETS) event observed beneath the northern Cascadia subduction zone in early 2003. Eos 84 (Fall Meeting Suppl.), S42G–02 (2003)

    Google Scholar 

  27. Bolton, M. K. & Rogers, G. C. Juan de Fuca plate seismicity at the northern end of the Cascadia subduction zone. Seismol. Res. Lett. 73, 214 (2002)

    Google Scholar 

  28. Ranero, C. R. & von Huene, R. Subduction erosion along the Middle America convergent margin. Nature 404, 748–752 (2003)

    Article  ADS  Google Scholar 

  29. Wells, R. E., Blakely, R. J., Sugiyama, Y., Scholl, D. W. & Dinterman, D. A. Basin-centered asperities in great subduction zone earthquakes: A link between slip, subduction and subduction erosion. J. Geophys. Res. 108, doi:10.1029/2002JB002072 (2003)

  30. Brocher, T. M., Fuis, G. S., Fisher, M. A., Plafker, G. & Moses, M. J. Mapping the megathrust beneath the northern Gulf of Alaska using wide-angle seismic data. J. Geophys. Res. 99, 11663–11685 (1994)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank K. Ramachandran for making available to me the 3D velocity model and the positions of the relocated earthquakes; T. Brocher for comments and suggestions that helped to improve the final manuscript; and H. Kao and M. Nedimović for discussions. This project was funded by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Calvert.

Ethics declarations

Competing interests

The author declares that he has no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calvert, A. Seismic reflection imaging of two megathrust shear zones in the northern Cascadia subduction zone. Nature 428, 163–167 (2004). https://doi.org/10.1038/nature02372

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02372

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing