Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Supramolecular dendritic liquid quasicrystals

Abstract

A large number of synthetic and natural compounds self-organize into bulk phases exhibiting periodicities on the 10-8–10-6 metre scale1 as a consequence of their molecular shape, degree of amphiphilic character and, often, the presence of additional non-covalent interactions. Such phases are found in lyotropic systems2 (for example, lipid–water, soap–water), in a range of block copolymers3 and in thermotropic (solvent-free) liquid crystals4. The resulting periodicity can be one-dimensional (lamellar phases), two-dimensional (columnar phases) or three dimensional (‘micellar’ or ‘bicontinuous’ phases). All such two- and three-dimensional structures identified to date obey the rules of crystallography and their symmetry can be described, respectively, by one of the 17 plane groups or 230 space groups. The ‘micellar’ phases have crystallographic counterparts in transition-metal alloys, where just one metal atom is equivalent to a 103 - 104-atom micelle. However, some metal alloys are known to defy the rules of crystallography and form so-called quasicrystals, which have rotational symmetry other than the allowed two-, three-, four- or six-fold symmetry5. Here we show that such quasiperiodic structures can also exist in the scaled-up micellar phases, representing a new mode of organization in soft matter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Self-assembly of wedge-shaped molecules.
Figure 2: Experimental and simulated X-ray diffraction patterns of the LQC.
Figure 3: Packing of spheres in the LQC and other related t.c.p. structures.

Similar content being viewed by others

References

  1. Supramolecular chemistry and self-assembly . Science 295 (special issue), 2395–2421 (2002)

    Article  Google Scholar 

  2. Seddon, J. M. Lyotropic phase behaviour of biological amphiphiles. Ber. Bunsenges. Phys. Chem. 100, 380–393 (1996)

    Article  CAS  Google Scholar 

  3. Thomas, E. L., Anderson, D. M., Henkee, C. S. & Hoffman, D. Periodic area-minimizing surfaces in block copolymers. Nature 334, 598–601 (1988)

    Article  ADS  CAS  Google Scholar 

  4. Tschierske, C. Micro-segregation, molecular shape and molecular topology partners for the design of liquid crystalline materials with complex mesophase morphologies. J. Mater. Chem. 11, 2647–2671 (2001)

    Article  CAS  Google Scholar 

  5. Janot, C. Quasicrystals: A Primer (Oxford Univ. Press, Oxford, 1992)

    MATH  Google Scholar 

  6. Lopes, W. A. & Jaeger, H. M. Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds. Nature 414, 735–738 (2001)

    Article  ADS  CAS  Google Scholar 

  7. Horne, R. W. in Molecular Plant Virology Vol. 1 (ed. Davies, J. W.) 1–41 (CRC, Boca Raton, 1985)

    Google Scholar 

  8. Newkome, G. R., Moorefield, C. N. & Vogtle, F. Dendrimers and Dendrons (Wiley-VCH, Weinheim, 2001)

    Book  Google Scholar 

  9. Yeardley, D. J. P., Ungar, G., Percec, V., Holerca, M. N. & Johansson, G. Spherical supramolecular minidendrimers self-organized in an “inverse micellar”-like thermotropic body-centered cubic liquid crystalline phase. J. Am. Chem. Soc. 122, 1684–1689 (2000)

    Article  CAS  Google Scholar 

  10. Balagurusamy, V. S. K., Ungar, G., Percec, V. & Johansson, G. Rational design of the first spherical supramolecular dendrimers self-organized in a novel thermotropic cubic liquid-crystalline phase and the determination of their shape by X-ray analysis. J. Am. Chem. Soc. 119, 1539–1555 (1997)

    Article  CAS  Google Scholar 

  11. Hudson, S. D. et al. Direct visualization of individual cylindrical and spherical supramolecular dendrimers. Science 278, 449–452 (1997)

    Article  ADS  CAS  Google Scholar 

  12. Bates, F. S., Cohen, R. E. & Berney, C. V. Small-angle neutron scattering determination of macro-lattice structure in a polystyrene polybutadiene diblock co-polymer. Macromolecules 15, 589–592 (1982)

    Article  ADS  CAS  Google Scholar 

  13. Luzzati, V., Vargas, R., Mariani, P., Gulik, A. & Delacroix, H. Cubic phases of lipid-containing systems—Elements of a theory and biological connotations. J. Mol. Biol. 229, 540–551 (1993)

    Article  CAS  Google Scholar 

  14. Ungar, G., Liu, Y. S., Zeng, X. B., Percec, V. & Cho, W.-D. Giant supramolecular liquid crystal lattice. Science 299, 1208–1211 (2003)

    Article  ADS  CAS  Google Scholar 

  15. Percec, V., Cho, W.-D., Ungar, G. & Yeardley, D. J. P. Synthesis and structural analysis of two constitutional isomeric libraries of AB2-based monodendrons and supramolecular dendrimers. J. Am. Chem. Soc. 123, 1302–1315 (2001)

    Article  CAS  Google Scholar 

  16. Percec, V., Holerca, M. N., Uchida, S., Yeardley, D. J. P. & Ungar, G. Poly(oxazoline)s with tapered minidendritic side groups as models for the design of synthetic macromolecules with tertiary structure. Biomacromolecules 2, 729–740 (2001)

    Article  CAS  Google Scholar 

  17. Percec, V. et al. Exploring and expanding the three-dimensional structural diversity of supramolecular dendrimers with the aid of libraries of alkali metals of their AB3 minidendritic carboxylates. Chem. Eur. J. 8, 1106–1117 (2002)

    Article  CAS  Google Scholar 

  18. Gähler, F. in Quasicrystalline Materials (eds Janot, C. & Dubois, J. M.) 272–284 (World Scientific, Singapore, 1988)

    Google Scholar 

  19. Frank, F. C. & Kasper, J. S. Complex alloy structures regarded as sphere packing. I. Definitions and basic principles. Acta Crystallogr. 11, 184–190 (1958)

    Article  CAS  Google Scholar 

  20. Ishimasa, T., Nissen, H.-U. & Fukano, Y. New ordered state between crystalline and amorphous in Ni-Cr particles. Phys. Rev. Lett. 55, 511–513 (1985)

    Article  ADS  CAS  Google Scholar 

  21. Chen, H., Li, D. X. & Kuo, K. H. New type of two-dimensional quasicrystal with twelvefold rotational symmetry. Phys. Rev. Lett. 60, 1645–1648 (1988)

    Article  ADS  CAS  Google Scholar 

  22. Yoshida, K., Yamada, T. & Taniguchi, Y. Long-period tetragonal lattice formation by solid-state alloying at the interfaces of Bi-Mn double-layer thin-films. Acta Crystallogr. B 45, 40–45 (1989)

    Article  Google Scholar 

  23. Conrad, M., Krumeich, F. & Harbrecht, B. A dodecagonal quasicrystalline chalcogenide. Angew. Chem. Int. Edn Engl. 37, 1383–1386 (1998)

    Article  Google Scholar 

  24. Stampfli, P. A dodecagonal quasiperiodic lattice in two dimensions. Helv. Phys. Acta 59, 1260–1263 (1986)

    Google Scholar 

  25. Baake, M., Klitzing, R. & Schlottmann, M. Fractally shaped acceptance domains of quasiperiodic square-triangle tilings with dodecagonal symmetry. Physica A 191, 554–558 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  26. Ziherl, P. & Kamien, R. D. Maximizing entropy by minimizing area: Towards a new principle of self-organization. J. Phys. Chem. B 105, 10147–10158 (2001)

    Article  CAS  Google Scholar 

  27. Thomson, W. On the division of space with minimum partitional area. Phil. Mag. 24, 503–514 (1887)

    Article  Google Scholar 

  28. Weaire, D. (ed.) The Kelvin Problem: Foam Structures of Minimal Surface Area (Taylor & Francis, London, 1997)

  29. Navailles, L., Barois, P. & Nguyen, H. T. X-ray measurement of the twisted grain boundary angle in the liquid crystal analog of the Abrikosov phase. Phys. Rev. Lett. 71, 545–548 (1993)

    Article  ADS  CAS  Google Scholar 

  30. Navailles, L., Pindak, R., Barois, P. & Nguyen, H. T. Structural study of the smectic-C twisted grain boundary phase. Phys. Rev. Lett. 74, 5224–5227 (1995)

    Article  ADS  CAS  Google Scholar 

  31. Bruinsma, R. F., Gelbart, W. M., Reguera, D., Rudnick, J. & Zandi, R. Viral self-assembly as a thermodynamic process. Phys. Rev. Lett. 24, 248101 (2003)

    Article  ADS  Google Scholar 

  32. Zoorob, M. E., Charlton, M. D. B., Parker, G. J., Baumberg, J. J. & Netti, M. C. Complete photonic bandgaps in 12-fold symmetric quasicrystals. Nature 404, 740–743 (2000)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Gleeson and P. Baker for assistance with X-ray diffraction experiments. We are grateful to P. A. Heiney, T. C. Lubensky and R. D. Kamien for reading the draft manuscript and for their suggestions. We acknowledge CCLRC for providing synchrotron beamtime. The synthesis part of the work was supported by the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goran Ungar.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, X., Ungar, G., Liu, Y. et al. Supramolecular dendritic liquid quasicrystals. Nature 428, 157–160 (2004). https://doi.org/10.1038/nature02368

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02368

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing