Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Immunogenicity of a highly attenuated MVA smallpox vaccine and protection against monkeypox

Abstract

The potential use of smallpox as a biological weapon has led to the production and stockpiling of smallpox vaccine and the immunization of some healthcare workers. Another public health goal is the licensing of a safer vaccine that could benefit the millions of people advised not to take the current one because they or their contacts have increased susceptibility to severe vaccine side effects1. As vaccines can no longer be tested for their ability to prevent smallpox, licensing will necessarily include comparative immunogenicity and protection studies in non-human primates. Here we compare the highly attenuated modified vaccinia virus Ankara (MVA)2 with the licensed Dryvax vaccine in a monkey model. After two doses of MVA or one dose of MVA followed by Dryvax, antibody binding and neutralizing titres and T-cell responses were equivalent or higher than those induced by Dryvax alone. After challenge with monkeypox virus, unimmunized animals developed more than 500 pustular skin lesions and became gravely ill or died, whereas vaccinated animals were healthy and asymptomatic, except for a small number of transient skin lesions in animals immunized only with MVA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sizes of Dryvax-induced lesions.
Figure 2: Binding and vaccinia virus neutralizing antibody responses.
Figure 3: Induction of vaccinia-virus-specific IFN-γ-producing T cells.
Figure 4: Viral load following monkeypox virus challenge.

Similar content being viewed by others

References

  1. Fulginiti, V. A., Papier, A., Lane, J. M., Neff, J. M. & Henderson, D. A. Smallpox vaccination: a review, part II. Adverse events. Clin. Infect. Dis. 37, 251–271 (2003)

    Article  Google Scholar 

  2. Mayr, A., Hochstein-Mintzel, V. & Stickl, H. Abstammung, eigenschaften und verwendung des attenuierten vaccinia-stammes MVA [Passage history, properties, and applicability of the attenuated vaccinia virus strain MVA]. Infection 3, 6–14 (1975)

    Article  Google Scholar 

  3. Meyer, H., Sutter, G. & Mayr, A. Mapping of deletions in the genome of the highly attenuated vaccinia virus MVA and their influence on virulence. J. Gen. Virol. 72, 1031–1038 (1991)

    Article  CAS  Google Scholar 

  4. Antoine, G., Scheiflinger, F., Dorner, F. & Falkner, F. G. The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses. Virology 244, 365–396 (1998)

    Article  CAS  Google Scholar 

  5. Carroll, M. & Moss, B. Host range and cytopathogenicity of the highly attenuated MVA strain of vaccinia virus: propagation and generation of recombinant viruses in a nonhuman mammalian cell line. Virology 238, 198–211 (1997)

    Article  CAS  Google Scholar 

  6. Drexler, I., Heller, K., Wahren, B., Erfle, V. & Sutter, G. Highly attenuated modified vaccinia virus Ankara replicates in baby hamster kidney cells, a potential host for virus propagation, but not in various human transformed and primary cells. J. Gen. Virol. 79, 347–352 (1998)

    Article  CAS  Google Scholar 

  7. Blanchard, T. J., Alcami, A., Andrea, P. & Smith, G. L. Modified vaccinia virus Ankara undergoes limited replication in human cells and lacks several immunomodulatory proteins: implications for use as a human vaccine. J. Gen. Virol. 79, 1159–1167 (1998)

    Article  CAS  Google Scholar 

  8. Sutter, G. & Moss, B. Nonreplicating vaccinia vector efficiently expresses recombinant genes. Proc. Natl Acad. Sci. USA 89, 10847–10851 (1992)

    Article  ADS  CAS  Google Scholar 

  9. Stittelaar, K. J. et al. Safety of modified vaccinia virus Ankara (MVA) in immune-suppressed macaques. Vaccine 19, 3700–3709 (2001)

    Article  CAS  Google Scholar 

  10. Hochstein-Mintzel, V., Huber, H.-C. & Stickl, H. Die orale und nasale immuniserung mit poxvirus vacciniae III. Mitteilung: tierexperimentelle untersuchungen [Oral and nasal immunization with poxvirus vaccine. Part III: experimental animal investigations]. Zentralbl. Bakteriol. Hyg. 156, 30–96 (1972)

    CAS  Google Scholar 

  11. Hochstein-Mintzel, V., Hänichen, T., Huber, H. C. & Stickl, H. Vaccinia- und variolaprotektive wirkung des modifezierten vaccinia-stammes MVA bei intramuskulärer immunisierung [An attenuated strain of vaccinia virus (MVA). Successful intramuscular immunization against vaccinia and variola]. Zentralbl. Bakteriol. Hyg. 230, 283–297 (1975)

    CAS  Google Scholar 

  12. Belyakov, I. M. et al. Shared modes of protection against poxvirus infection by attenuated and conventional smallpox vaccine viruses. Proc. Natl Acad. Sci. USA 100, 9458–9463 (2003)

    Article  ADS  CAS  Google Scholar 

  13. Stickl, H. et al. MVA-stufenimpfung gegen pocken. klinische erprobung des attenuierten pocken-lebendimpfstoffes, stamm MVA [MVA vaccination against smallpox: clinical trials of an attenuated live vaccinia virus strain (MVA)]. Dtsch. Med. Wochenschr. 99, 2386–2392 (1974)

    Article  CAS  Google Scholar 

  14. Mayr, A., Stickl, H., Müller, H. K., Danner, K. & Singer, H. Der pockenimpfstamm MVA: marker, genetische struktur, erfahrungen mit der parenteralen schutzimpfung und verhalten im abwehrgeschwächten organismus [The smallpox vaccination strain MVA: marker, genetic structure, experience gained with parenteral vaccination and behavior in organisms with debilitated defense mechanism]. Zentralbl. Bakteriol. Hyg. 167, 375–390 (1978)

    CAS  Google Scholar 

  15. Mayr, A. History of variola, smallpox-eradication and MVA. Berl. Munch. Tierarztl. Wochenschr. 112, 322–328 (1999)

    CAS  PubMed  Google Scholar 

  16. Zaucha, G. M., Jahrling, P. B., Geisbert, T. W., Swearengen, J. R. & Hensley, L. The pathology of experimental aerosolized monkeypox virus infection in cynomolgus monkeys (Macaca fascicularis). Lab. Invest. 81, 1581–1600 (2001)

    Article  CAS  Google Scholar 

  17. LeDuc, J. W., Damon, I., Relman, D. A., Huggins, J. & Jahrling, P. B. Smallpox research activities: U.S. interagency collaboration, 2001. Emerg. Infect. Dis. 8, 743–745 (2002)

    Article  Google Scholar 

  18. Arita, I., Jezek, Z., Khodakevich, L. & Ruti, K. Human monkeypox: a newly emerged orthopoxvirus zoonosis in the tropical rain forests of Africa. Am. J. Trop. Med. Hyg. 34, 781–789 (1985)

    Article  CAS  Google Scholar 

  19. Breman, J. G. & Henderson, D. A. Poxvirus dilemmas—monkeypox, smallpox, and biologic terrorism. N. Engl. J. Med. 339, 556–559 (1998)

    Article  CAS  Google Scholar 

  20. Smith, G. L., Vanderplasschen, A. & Law, M. The formation and function of extracellular enveloped vaccinia virus. J. Gen. Virol. 83, 2915–2931 (2002)

    Article  CAS  Google Scholar 

  21. Law, M. & Smith, G. L. Antibody neutralization of the extracellular enveloped form of vaccinia virus. Virology 280, 132–142 (2001)

    Article  CAS  Google Scholar 

  22. Hooper, J. W., Custer, D. M., Schmaljohn, C. S. & Schmaljohn, A. L. DNA vaccination with vaccinia virus L1R and A33R genes protects mice against a lethal poxvirus challenge. Virology 266, 329–339 (2000)

    Article  CAS  Google Scholar 

  23. Hooper, J. W., Custer, D. M. & Thompson, E. Four-gene-combination DNA vaccine protects mice against a lethal vaccinia virus challenge and elicits appropriate antibody responses in nonhuman primates. Virology 306, 181–195 (2003)

    Article  CAS  Google Scholar 

  24. Galmiche, M. C., Goenaga, J., Wittek, R. & Rindisbacher, L. Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. Virology 254, 71–80 (1999)

    Article  CAS  Google Scholar 

  25. Wolffe, E. J., Vijaya, S. & Moss, B. A myristylated membrane protein encoded by the vaccinia virus L1R open reading frame is the target of potent neutralizing monoclonal antibodies. Virology 211, 53–63 (1995)

    Article  CAS  Google Scholar 

  26. Earl, P. L., Americo, J. L. & Moss, B. Development and use of a vaccinia virus neutralization assay based on flow cytometric detection of green fluorescent protein. J. Virol. 77, 10684–10688 (2003)

    Article  CAS  Google Scholar 

  27. Appleyard, G., Hapel, A. J. & Boulter, E. A. An antigenic difference between intracellular and extracellular rabbitpox virus. J. Gen. Virol. 13, 9–17 (1971)

    Article  CAS  Google Scholar 

  28. Law, M., Hollinshead, R. & Smith, G. L. Antibody-sensitive and antibody-resistant cell-to-cell spread by vaccinia virus: role of the A33R protein in antibody-resistant spread. J. Gen. Virol. 83, 209–222 (2002)

    Article  CAS  Google Scholar 

  29. Breman, J. G. & Henderson, D. A. Diagnosis and management of smallpox. N. Engl. J. Med. 346, 1300–1308 (2002)

    Article  Google Scholar 

  30. Speller, S. A. & Warren, A. P. Ex vivo detection and enumeration of human antigen-specific CD8+ T lymphocytes using antigen delivery by a recombinant vaccinia expression vector and intracellular cytokine staining. J. Immunol. Methods 262, 167–180 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to R. Elkins (NIAID) for animal acquisition and to R. Byrum (Bioqual, Inc.) for animal care and immunizations. The work was supported by the National Institute of Allergy and Infectious Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Moss.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure 1

Photographs of Dryvax-induced skin lesions. (PDF 551 kb)

Supplementary Figure 2

Antibody responses of individual animals. (PDF 78 kb)

Supplementary Figure 3

Reduction of cell-to-cell spread of vaccinia virus by sera fromindividual animals. (PDF 195 kb)

Supplementary Figure 4

Monkeypox viral skin lesions. (PDF 47 kb)

Supplementary Figure Legends (PDF 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Earl, P., Americo, J., Wyatt, L. et al. Immunogenicity of a highly attenuated MVA smallpox vaccine and protection against monkeypox. Nature 428, 182–185 (2004). https://doi.org/10.1038/nature02331

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02331

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing