Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A distance of 133–137 parsecs to the Pleiades star cluster

Abstract

Nearby ‘open’ clusters of stars (those that are not gravitationally bound) have played a crucial role in the development of stellar astronomy because, as a consequence of the stars having a common age, they provide excellent natural laboratories to test theoretical stellar models. Clusters also play a fundamental part in determining distance scales. The satellite Hipparcos1 surprisingly found that an extensively studied open cluster—the Pleiades (also known as the Seven Sisters)—had a distance of D = 118 ± 4 pc (refs 2, 3), about ten per cent smaller than the accepted value4,5,6. The discrepancy generated a spirited debate because the implication7 was that either current stellar models were incorrect by a surprising amount or Hipparcos was giving incorrect distances. Here we report the orbital parameters of the bright double star Atlas in the Pleiades, using long-baseline optical/infrared interferometry. From the data we derive a firm lower bound of D > 127 pc, with the most likely range being 133 < D < 137 pc. Our result reaffirms the fidelity of current stellar models.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fringe visibilities and model fits for Atlas.
Figure 2: The visual orbit of Atlas.
Figure 3: Mass–distance relationship for Atlas.

Similar content being viewed by others

References

  1. Perryman, M. A. C. et al. The HIPPARCOS Catalogue. Astron. Astrophys. 323, L49–L52 (1997)

    ADS  Google Scholar 

  2. Mermilliod, J.-C., Turon, C., Robichon, N., Arenou, F. & Lebreton, Y. in ESA SP-402: Hipparcos—Venice'97 (eds Perryman, M. A. C. & Bernacca, P. L.) 643–650 (European Space Agency, Paris, 1997)

    Google Scholar 

  3. van Leeuwen, F. & Hansen Ruiz, C. S. in ESA SP-402: Hipparcos—Venice'97 (eds Perryman, M. A. C. & Bernacca, P. L.) 689–692 (European Space Agency, Paris, 1997)

    Google Scholar 

  4. Meynet, G., Mermilliod, J.-C. & Maeder, A. A New dating of galactic open clusters. Astron. Astrophys. Suppl. Ser. 98, 477–504 (1993)

    ADS  Google Scholar 

  5. Pinsonneault, M. H., Stauffer, J., Soderblom, D. R., King, J. R. & Hanson, R. B. The problem of HIPPARCOS distances to open clusters. I. Constraints from multicolor main-sequence fitting. Astrophys. J. 504, 170–191 (1998)

    Article  ADS  Google Scholar 

  6. Gatewood, G., de Jonge, J. K. & Han, I. The Pleiades, MAP-based trigonometric parallaxes of open clusters. V. Astrophys. J. 533, 938–943 (2000)

    Article  ADS  Google Scholar 

  7. Paczynski, B. The distance to Pleiades. Acta Astron. 53, 209–211 (2003)

    ADS  Google Scholar 

  8. Abt, H. A., Barnes, R. C., Biggs, E. S. & Osmer, P. S. The frequency of spectroscopic binaries in the Pleiades. Astrophys. J. 142, 1604–1615 (1965)

    Article  ADS  Google Scholar 

  9. Pearce, J. A. & Hill, G. Four suspected spectroscopic binaries in the Pleiades. Publ. Astron. Soc. Pacif. 83, 493–495 (1971)

    Article  ADS  Google Scholar 

  10. McGraw, J. T., Dunham, D. W., Evans, D. S. & Moffet, T. J. Occultations of the Pleiades: photoelectric observations at Tonantzintla with a discussion of the duplicity of Atlas. Astron. J. 79, 1299–1303 (1974)

    Article  ADS  Google Scholar 

  11. Shao, M., Colavita, M. M., Hines, B. E., Staelin, D. H. & Hutter, D. J. The Mark III stellar interferometer. Astron. Astrophys. 193, 357–371 (1988)

    ADS  CAS  Google Scholar 

  12. Colavita, M. M. et al. The Palomar testbed interferometer. Astrophys. J. 510, 505–521 (1999)

    Article  ADS  Google Scholar 

  13. de Vegt, C. & Gehlich, U. K. Results of photoelectric lunar occultation observations obtained at the Hamburg Observatory during 1969–1973. Astron. Astrophys. 48, 245–252 (1976)

    ADS  Google Scholar 

  14. Meyer, C., Rabbia, Y., Froeschle, M., Helmer, G. & Amieux, G. Observations of lunar occultations at Observatoire de la Cote d'Azur. Astron. Astrophys. Suppl. Ser. 110, 107–123 (1995)

    ADS  Google Scholar 

  15. Ventura, P., Zeppieri, A., Mazzitelli, I. & D'Antona, F. Full spectrum of turbulence convective mixing: I Theoretical main sequences and turn-off for 0.6–15 M . Astron. Astrophys. 334, 953–968 (1998)

    ADS  Google Scholar 

  16. Raboud, D. & Mermilliod, J.-C. Investigation of the Pleiades cluster. IV. The radial structure. Astron. Astrophys. 329, 101–114 (1998)

    ADS  Google Scholar 

  17. Pinfield, D. J., Jameson, R. F. & Hodgkin, S. T. The mass of the Pleiades. Mon. Not. R. Astron. Soc. 299, 955–964 (1998)

    Article  ADS  Google Scholar 

  18. Castellani, V., Degl'Innocenti, S., Prada Moroni, P. G. & Tordiglione, V. Hipparcos open clusters and stellar evolution. Mon. Not. R. Astron. Soc. 334, 193–197 (2002)

    Article  ADS  Google Scholar 

  19. Narayanan, V. K. & Gould, A. Correlated errors in HIPPARCOS parallaxes toward the Pleiades and the Hyades. Astrophys. J. 523, 328–339 (1999)

    Article  ADS  Google Scholar 

  20. Shao, M. & Colavita, M. M. Long-baseline optical and infrared stellar interferometry. Annu. Rev. Astron. Astrophys. 30, 457–498 (1992)

    Article  ADS  Google Scholar 

  21. Lane, B. F. & Muterspaugh, M. W. Differential astrometry of sub-arcsecond scale binaries at the Palomar testbed interferometer. Astron. J. 125, 1623–1628 (2003)

    Article  ADS  Google Scholar 

  22. Giannuzzi, M. A. The spectroscopic binary HD 23642 and the distance of the Pleiades. Astron. Astrophys. 293, 360–362 (1995)

    ADS  Google Scholar 

  23. Mermilliod, J.-C., Rosvick, J. M., Duquennoy, A. & Mayor, M. Investigation of the Pleiades cluster. II—Binary stars in the F5-K0 spectral region. Astron. Astrophys. 265, 513–526 (1992)

    ADS  Google Scholar 

  24. Richichi, A., Calamai, G. & Leinert, C. New binary stars discovered by lunar occultations. Astron. Astrophys. 286, 829–837 (1994)

    ADS  Google Scholar 

  25. Torres, G. Discovery of a bright eclipsing binary in the Pleiades cluster. Inform. Bull. Variable Stars 5402, 1–3 (2003)

    ADS  Google Scholar 

  26. Pan, X. P. et al. Apparent orbit of the spectroscopic binary β Arietis with the Mark III stellar interferometer. Astrophys. J. 356, 641–645 (1990)

    Article  ADS  Google Scholar 

  27. Hummel, C. A. et al. The spectroscopic binary eta Andromedae: Determination of the orbit by optical interferometry. Astron. J. 106, 2486–2492 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank other members of the PTI and Mark III teams and especially A. Boden and B. Lane for a careful reading. We gratefully acknowledge discussions with N. Reid, R. M. Rich, D. Sasselov, J. Stauffer, J. Tomkin and D. VandenBerg. We extensively used the SIMBAD database of astronomical papers and are grateful to CDS, France, and NASA for maintaining this system. The research described in this paper was primarily carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. S.R.K.'s research is supported by NSF and NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Kulkarni.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, X., Shao, M. & Kulkarni, S. A distance of 133–137 parsecs to the Pleiades star cluster. Nature 427, 326–328 (2004). https://doi.org/10.1038/nature02296

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02296

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing